Jump to content

Recommended Posts

Posted (edited)

After the opencv udf, Dlib seems to be a missing library for image processing.

This UDF provides a way to use dlib in AutoIt

The usage is similar to the  python usage of dlib

Prerequisites

Sources

Here

Documentation

A generated documentation for functions is available here

Examples

More examples can be found here

To run them, please follow these instructions

Face detection

#Region ;**** Directives created by AutoIt3Wrapper_GUI ****
#AutoIt3Wrapper_UseX64=y
#AutoIt3Wrapper_Change2CUI=y
#AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6
#AutoIt3Wrapper_AU3Check_Stop_OnWarning=y
#EndRegion ;**** Directives created by AutoIt3Wrapper_GUI ****

#include <Misc.au3>
#include "autoit-dlib-com\udf\dlib_udf_utils.au3"

_Dlib_Open("opencv-4.7.0-windows\opencv\build\x64\vc16\bin\opencv_world470.dll", "autoit-dlib-com\autoit_dlib_com-19.24-470.dll")
OnAutoItExitRegister("_OnAutoItExit")

Example()

Func Example()
  Local Const $dlib = _Dlib_get()
  If Not IsObj($dlib) Then Return

  Local $detector = $dlib.get_frontal_face_detector()
  Local $win = _Dlib_ObjCreate("image_window")

  Local $image_path = _Dlib_FindFile("examples\faces\2008_002470.jpg")
  Local $img = $dlib.load_rgb_image($image_path)

  $win.set_image($img)

  ; The 1 in the second argument indicates that we should upsample the image
  ; 1 time.  This will make everything bigger and allow us to detect more
  ; faces.
  Local $dets = $detector.call($img, 1)
  ConsoleWrite("Number of faces detected: " & UBound($dets) & @CRLF)

  Local $d
  For $i = 0 To UBound($dets) - 1
    $d = $dets[$i]
    ConsoleWrite(StringFormat("Detection %d: Left: %d Top: %d Right: %d Bottom: %d", _
        $i, $d.left(), $d.top(), $d.right(), $d.bottom()) & @CRLF)
  Next

  $win.add_overlay($dets)
  hit_to_continue()
EndFunc   ;==>Example

Func hit_to_continue()
  ToolTip("Hit ESC to continue", 0, 0)
  ConsoleWrite("Hit ESC to continue" & @CRLF)
  Do
    Sleep(50)
  Until _IsPressed("1B")
EndFunc   ;==>hit_to_continue

Func _OnAutoItExit()
  _Dlib_Close()
EndFunc   ;==>_OnAutoItExit

Camera face detection using opencv

First, download the opencv UDF from here

#Region ;**** Directives created by AutoIt3Wrapper_GUI ****
#AutoIt3Wrapper_UseX64=y
#AutoIt3Wrapper_Change2CUI=y
#AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6
#AutoIt3Wrapper_AU3Check_Stop_OnWarning=y
#EndRegion ;**** Directives created by AutoIt3Wrapper_GUI ****

#include <Misc.au3>
#include "autoit-dlib-com\udf\dlib_udf_utils.au3"
#include "autoit-opencv-com\udf\opencv_udf_utils.au3"

_Dlib_Open("opencv-4.7.0-windows\opencv\build\x64\vc16\bin\opencv_world470.dll", "autoit-dlib-com\autoit_dlib_com-19.24-470.dll")
_OpenCV_Open("opencv-4.7.0-windows\opencv\build\x64\vc16\bin\opencv_world470.dll", "autoit-opencv-com\autoit_opencv_com470.dll")
OnAutoItExitRegister("_OnAutoItExit")

Example()

Func Example()
  Local Const $dlib = _Dlib_get()
  If Not IsObj($dlib) Then Return

  Local Const $cv = _OpenCV_get()
  If Not IsObj($cv) Then Return

  Local $detector = $dlib.get_frontal_face_detector()
  Local $cam = _OpenCV_ObjCreate("VideoCapture").create(0)
  Local $color_green = _OpenCV_Tuple(0, 255, 0)
  Local $line_width = 3
  Local $img, $dets, $det

  While True
    If $cam.read() Then
      $img = $cv.extended[1]
      $dets = $detector.call($img)

      For $i = 0 To UBound($dets) - 1
        $det = $dets[$i]
        $cv.rectangle($img, _OpenCV_Tuple($det.left(), $det.top()), _OpenCV_Tuple($det.right(), $det.bottom()), $color_green, $line_width)
      Next

      ;; Flip the image horizontally to give the mirror impression
      $cv.imshow("my webcam", $cv.flip($img, 1))
    EndIf

    If _IsPressed("1B") Then
      ExitLoop  ; esc to quit
    EndIf

    Sleep(1)
  WEnd

  $cv.destroyAllWindows()
EndFunc   ;==>Example

Func _OnAutoItExit()
  _OpenCV_Close()
  _Dlib_Close()
EndFunc   ;==>_OnAutoItExit

 

Edited by smbape
Update dlib to 19.24.4
  • 2 weeks later...
  • 9 months later...
Posted

Hi @smbape,

thanks a lot for this great UDF 😊! Finally a solution I got to work, that can perform face recognition and matching. I used your https://github.com/smbape/node-autoit-dlib-com?tab=readme-ov-file#running-examples guidance to set-up the environment and manually downloaded the two additional dlib-models required.

#Region ;**** Directives created by AutoIt3Wrapper_GUI ****
#AutoIt3Wrapper_UseX64=y
#EndRegion ;**** Directives created by AutoIt3Wrapper_GUI ****

; Dlib UDF by smbape
; https://www.autoitscript.com/forum/topic/207773-dlib-udf/

; Dlib Face Recognition example by KaFu
; https://github.com/davisking/dlib/blob/v19.24/python_examples/face_recognition.py

#include <Misc.au3>
#include "..\autoit-dlib-com\udf\dlib_udf_utils.au3"

; sample - one of the faces from the example gallery picture "2007_007763.jpg"
Local $a_128D_Face_Descriptor_of_Face_to_look_for[129] = [128, -0.091833, 0.0675418, 0.00142617, -0.0139504, -0.0903373, -0.0616875, -0.0384285, -0.14486, 0.0820726, -0.0852851, 0.17568, -0.0610356, -0.145164, -0.0266639, -0.0164959, 0.113634, -0.124758, -0.103387, -0.146446, -0.045612, 0.00516588, -9.29451E-05, 0.0863597, 0.0242456, -0.14534, -0.328905, -0.123818, -0.0685623, 0.0621051, 0.00807183, 0.0105838, 0.0424884, -0.254334, -0.118144, 0.0365846, 0.0897826, -0.0123099, -0.0522731, 0.226144, 0.0407339, -0.18469, 0.0978772, 0.049654, 0.260682, 0.230801, -0.0613484, 0.0384872, -0.0580775, 0.070347, -0.190347, 0.0539085, 0.122605, 0.136734, 0.0766652, -0.029859, -0.040169, 0.0905577, 0.16567, -0.184592, 0.0334291, 0.131489, -0.105992, -0.0602567, 0.043018, 0.142796, 0.110119, -0.086098, -0.164362, 0.0712913, -0.101671, -6.08778E-05, 0.0195526, -0.136251, -0.131349, -0.324134, 0.050356, 0.397348, 0.0955416, -0.193875, 0.0465133, -0.143481, 0.0191909, 0.0440991, 0.0355733, -0.0547336, -0.0449448, -0.105943, 0.0979393, 0.154901, -0.0282238, -0.0588183, 0.193323, 0.00501542, -0.0170646, 0.0698614, 0.130419, -0.161941, -0.0505242, -0.109364, -0.042785, 0.10326, -0.0566043, 0.0215982, 0.107899, -0.215276, 0.213152, -0.0453729, -0.00757293, 0.0653693, -0.0408494, -0.0396944, -0.00927441, 0.126415, -0.17009, 0.166003, 0.15904, -0.0532249, 0.13575, 0.138663, 0.0392869, -0.0467882, 0.0669965, -0.15721, -0.0904878, 0.0118087, 0.0483355, 0.100762, 0.0341779]

_Dlib_Open(_Dlib_FindDLL("opencv_world4100*"), _Dlib_FindDLL("autoit_dlib_com-*-4100*"))
OnAutoItExitRegister("_OnAutoItExit")
Func _OnAutoItExit()
    _Dlib_Close()
EndFunc   ;==>_OnAutoItExit

Local Const $o_Dlib = _Dlib_get()
If Not IsObj($o_Dlib) Then Exit 356

Local $s_Data_Path_Predictor = @ScriptDir & "\data\shape_predictor_5_face_landmarks.dat" ; https://github.com/davisking/dlib-models/raw/master/shape_predictor_5_face_landmarks.dat.bz2
Local $s_Data_Path_Face_Rec_Model = @ScriptDir & "\data\dlib_face_recognition_resnet_model_v1.dat" ; https://github.com/davisking/dlib-models/raw/master/dlib_face_recognition_resnet_model_v1.dat.bz2

; Load all the models we need: a detector to find the faces, a shape predictor to find face landmarks so we can precisely localize the face, and finally the face recognition model.
Local $o_Dlib_Frontal_Face_Detector = $o_Dlib.get_frontal_face_detector()
Local $o_Dlib_Shape_Predictor = _Dlib_ObjCreate("shape_predictor").create($s_Data_Path_Predictor)
Local $o_Dlib_Face_Rec_Model = _Dlib_ObjCreate("face_recognition_model_v1").create($s_Data_Path_Face_Rec_Model)

; For display of results only, not required for the operation itself
Local $o_Dlib_Window = _Dlib_ObjCreate("image_window")

Local $a_All_Files_found_to_process = _Dlib_FindFiles("*.jpg", @ScriptDir & "\faces\")

; Now process all the images
For $s_Current_File_to_process In $a_All_Files_found_to_process

    $s_Current_File_to_process = @ScriptDir & "\faces\" & "\" & $s_Current_File_to_process
    ConsoleWrite(@CRLF & "Processing file: " & $s_Current_File_to_process & @CRLF)

    $o_Dlib_Image = $o_Dlib.load_rgb_image($s_Current_File_to_process)

    $o_Dlib_Window.clear_overlay()
    $o_Dlib_Window.set_title($s_Current_File_to_process)
    $o_Dlib_Window.set_image($o_Dlib_Image)

    ; Ask the detector to find the bounding boxes of each face.
    ; The 1 in the second argument indicates that we should upsample the image 1 time. This will make everything bigger and allow us to detect more faces.
    ; The third argument to run is an optional adjustment to the detection threshold, where a negative value will return more detections and a positive value fewer.
    $a_Detected_Faces_Rect = $o_Dlib_Frontal_Face_Detector($o_Dlib_Image, 1, 0)

    ; $a_Detected_Faces_Rect = $o_Dlib.extended[0] ; same result
    ConsoleWrite("Number of faces detected in image: " & UBound($a_Detected_Faces_Rect) & @CRLF)

    ; You can ask the detector to tell you the score for each detection. The score is bigger for more confident detections.
    $a_Detected_Faces_Confidence_Scores = $o_Dlib.extended[1]

    ; The idx tells you which of the face sub-detectors matched. This can be used to broadly identify faces in different orientations.
    $a_Detected_Faces_Matching_Filter_idx = $o_Dlib.extended[2]
    ; https://github.com/davisking/dlib/blob/master/dlib/image_processing/frontal_face_detector.h
    ; 1 = front looking
    ; 2 = left looking
    ; 3 = right looking
    ; 4 = front looking but rotated left
    ; 5 = front looking but rotated right

    #cs
        ; Show an overlay of all detected faces in preview window
        $o_Dlib_All_Rectangles_of_all_detected_Faces = _Dlib_ObjCreate("VectorOfRectangle")
        For $i_Detected_Faces_Enum = 0 To UBound($a_Detected_Faces_Rect) - 1
            $o_Dlib_All_Rectangles_of_all_detected_Faces.Add($a_Detected_Faces_Rect[$i_Detected_Faces_Enum])
        Next
        $o_Dlib_Window.add_overlay($o_Dlib_All_Rectangles_of_all_Faces)
    #ce


    ; Now process each face we found.
    For $i_Detected_Faces_Enum = 0 To UBound($a_Detected_Faces_Rect) - 1

        $t_Detected_Face_Rectangle = $a_Detected_Faces_Rect[$i_Detected_Faces_Enum]
        ConsoleWrite("+ Face #" & $i_Detected_Faces_Enum + 1 & @TAB & @TAB)
        ConsoleWrite(StringFormat("Left: %d, Top: %d, Right: %d, Bottom: %d", $t_Detected_Face_Rectangle.left(), $t_Detected_Face_Rectangle.top(), $t_Detected_Face_Rectangle.right(), $t_Detected_Face_Rectangle.bottom()) & @CRLF)

        ConsoleWrite("Confidence score = " & $a_Detected_Faces_Confidence_Scores[$i_Detected_Faces_Enum] & @TAB & @CRLF)
        ConsoleWrite("Matching filter = " & $a_Detected_Faces_Matching_Filter_idx[$i_Detected_Faces_Enum] & @CRLF)

        ; Get the landmarks/parts for the face in box $t_Detected_Face_Rectangle
        $o_Detected_Face_Landmarks_Shape = $o_Dlib_Shape_Predictor($o_Dlib_Image, $t_Detected_Face_Rectangle)
        ; ; Get the landmarks/parts for the face
        ConsoleWrite(StringFormat("Landmark 0: %s, Landmark 1: %s ...", $o_Detected_Face_Landmarks_Shape.part(0).ToString(), $o_Detected_Face_Landmarks_Shape.part(1).ToString()) & @CRLF)

        ; Draw the face landmarks on the screen so we can see what face is currently being processed.
        $o_Dlib_Window.clear_overlay()
        $o_Dlib_Window.add_overlay($t_Detected_Face_Rectangle)
        $o_Dlib_Window.add_overlay($o_Detected_Face_Landmarks_Shape)

        ; Compute the 128D vector that describes the face in img identified by shape.
        ; It should also be noted that you can also call this function like this:
        ; face_descriptor = facerec.compute_face_descriptor(img, shape, 100, 0.25)
        ; The version of the call without the 100 gets 99.13% accuracy on LFW while the version with 100 gets 99.38%.  However, the 100 makes the call 100x slower to execute, so choose whatever version you like. To explain a little, the 3rd argument tells the code how many times to
        ; jitter/resample the image.  When you set it to 100 it executes the face descriptor extraction 100 times on slightly modified versions of the face and returns the average result.  You could also pick a more middle value, such as 10, which is only 10x slower but still gets an
        ; LFW accuracy of 99.3%. 4th value (0.25) is padding around the face. If padding == 0 then the chip will be closely cropped around the face. Setting larger padding values will result a looser cropping. In particular, a padding of 0.5 would double the width of the cropped area, a value of
        ; would triple it, and so forth. There is another overload of compute_face_descriptor that can take as an input an aligned image.

        ConsoleWrite("Computing 128D face description vector..." & @CRLF)
        $o_Detected_Face_Descriptor = $o_Dlib_Face_Rec_Model.compute_face_descriptor($o_Dlib_Image, $o_Detected_Face_Landmarks_Shape)
        ; $o_Detected_Face_Descriptor = $o_Dlib_Face_Rec_Model.compute_face_descriptor($o_Dlib_Image, $o_Detected_Face_Landmarks_Shape, 4, 1)
        ConsoleWrite("$o_Detected_Face_Descriptor.ToString() = " & @TAB & @TAB & @TAB & StringReplace($o_Detected_Face_Descriptor.ToString(), @LF, ",") & @CRLF)

        ; It is important to generate the aligned image as dlib.get_face_chip would do it i.e. the size must be 150x150, centered and scaled.
        ConsoleWrite("Computing description on aligned image..." & @CRLF)
        ; Let's generate the aligned image using get_face_chip
        $o_Detected_Face_Chip_Aligned_Image = $o_Dlib.get_face_chip($o_Dlib_Image, $o_Detected_Face_Landmarks_Shape)
        ; https://dlib.net/python/#dlib_pybind11.get_face_chip

        #cs
            ; Show 5 jittered images without data augmentation
            Local $a_Jittered_Images = $o_Dlib.jitter_image($o_Detected_Face_Chip_Aligned_Image, 5)
            show_jittered_images($o_Dlib_Window, $a_Jittered_Images)
            ; Show 5 jittered images with data augmentation
            $a_Jittered_Images = $o_Dlib.jitter_image($o_Detected_Face_Chip_Aligned_Image, 5, True)
            show_jittered_images($o_Dlib_Window, $a_Jittered_Images)
        #ce

        ; Now we simply pass this chip (aligned image) to the api
        $o_Detected_Face_Descriptor_from_prealigned_image = $o_Dlib_Face_Rec_Model.compute_face_descriptor($o_Detected_Face_Chip_Aligned_Image)
        ConsoleWrite("$o_Detected_Face_Descriptor_from_prealigned_image.ToString() = " & @TAB & StringReplace($o_Detected_Face_Descriptor_from_prealigned_image.ToString(), @LF, ",") & @CRLF)

        $a_Detected_Face_Descriptor_128D = StringSplit($o_Detected_Face_Descriptor_from_prealigned_image.ToString(), @LF)

        If Not IsArray($a_128D_Face_Descriptor_of_Face_to_look_for) Then
            ; if no target has been set yet, use the first face found as pattern for the search
            If UBound($a_Detected_Face_Descriptor_128D) = 129 Then
                $a_128D_Face_Descriptor_of_Face_to_look_for = $a_Detected_Face_Descriptor_128D
                #cs
                    ; manually create 128D target descriptor
                    $s_128D_Face_Descriptor_of_Face_to_look_for = "$a_128D_Face_Descriptor_of_Face_to_look_for[129] = [128"
                    For $i = 1 To 128
                        $s_128D_Face_Descriptor_of_Face_to_look_for &= "," & $a_128D_Face_Descriptor_of_Face_to_look_for[$i]
                    Next
                    $s_128D_Face_Descriptor_of_Face_to_look_for &= "]"
                    ConsoleWrite($s_128D_Face_Descriptor_of_Face_to_look_for & @CRLF)
                #ce
                ContinueLoop 2
            Else
                ContinueLoop ; Descriptor not valid
            EndIf
        EndIf

        $i_128D_Euclidean_Distance = _Euclidean_Distance_of_128D_Vectors($a_Detected_Face_Descriptor_128D, $a_128D_Face_Descriptor_of_Face_to_look_for)

        If $i_128D_Euclidean_Distance <= 0.5 Then
            ; Possible match
            ConsoleWrite("+ Possible MATCH, Euclidean Distance = " & @TAB & $i_128D_Euclidean_Distance & @CRLF)
            MsgBox(32, "Dlib Face Recognition result - Possible MATCH", "Possible Face MATCH found" & @CRLF & @CRLF _
                     & "Euclidean Distance to Face to look for = " & $i_128D_Euclidean_Distance _
                     & @CRLF & @CRLF & @CRLF & @CRLF & @CRLF & @CRLF _
                     & "In general, if two face descriptor vectors have a Euclidean distance between them less than 0.6 then they are from the same person, otherwise they are from different people." & @CRLF & @CRLF _
                     & "KaFu: I found 0.5 to be more accurate, more testing required")

        Else
            ; No match
            ConsoleWrite("- Face does not seem to match, Euclidean Distance = " & @TAB & $i_128D_Euclidean_Distance & @CRLF)
            MsgBox(48, "Dlib Face Recognition result - Not matching", "Face does not seem to match" & @CRLF & @CRLF _
                     & "Euclidean Distance to Face to look for = " & $i_128D_Euclidean_Distance _
                     & @CRLF & @CRLF & @CRLF & @CRLF & @CRLF & @CRLF _
                     & "In general, if two face descriptor vectors have a Euclidean distance between them less than 0.6 then they are from the same person, otherwise they are from different people." & @CRLF & @CRLF _
                     & "KaFu: I found 0.5 to be more accurate, more testing required")

        EndIf

    Next
Next

Func _Euclidean_Distance_of_128D_Vectors($a_Vector_1, $a_Vector_2)
    If UBound($a_Vector_1) <> 129 Then Return SetError(1, 0, -1) ; 1-based 128 array required
    If UBound($a_Vector_2) <> 129 Then Return SetError(2, 0, -1)
    ; https://en.wikipedia.org/wiki/Euclidean_distance
    Local $i_Euclidean_Distance_of_128D_Vectors
    For $i = 1 To 128
        $i_Euclidean_Distance_of_128D_Vectors += ($a_Vector_1[$i] - $a_Vector_2[$i]) ^ 2
        ; ConsoleWrite("_Euclidean_Distance_of_128D_Vectors = " & $i & @TAB & $i_128D_Vector_Euclidean_Distance & @TAB & $a_Vector_1[$i] & @TAB & $a_Vector_2[$i] & @CRLF)
    Next
    Return Sqrt($i_Euclidean_Distance_of_128D_Vectors)
EndFunc   ;==>_Euclidean_Distance_of_128D_Vectors

Func show_jittered_images($window, $jittered_images)
    ; Shows the specified jittered images one by one
    For $i = 0 To UBound($jittered_images) - 1
        Local $img = $jittered_images[$i]
        $window.set_image($img)
        MsgBox(0, "show_jittered_images", "jittered image " & $i & ": ")
    Next
EndFunc   ;==>show_jittered_images

Currently the dll is compiled for 64bit, maybe you could provide a 32bit version too?

Your effort is much appreciated 👍!

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...