smbape Posted March 19, 2022 Posted March 19, 2022 (edited) After the opencv udf, Dlib seems to be a missing library for image processing. This UDF provides a way to use dlib in AutoIt The usage is similar to the python usage of dlib Prerequisites Download and extract autoit-dlib-19.24.4-opencv-4.10.0-com-v1.4.3.7z into a folder Sources Here Documentation A generated documentation for functions is available here Examples More examples can be found here To run them, please follow these instructions Face detection expandcollapse popup#Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** #include <Misc.au3> #include "autoit-dlib-com\udf\dlib_udf_utils.au3" _Dlib_Open("opencv-4.7.0-windows\opencv\build\x64\vc16\bin\opencv_world470.dll", "autoit-dlib-com\autoit_dlib_com-19.24-470.dll") OnAutoItExitRegister("_OnAutoItExit") Example() Func Example() Local Const $dlib = _Dlib_get() If Not IsObj($dlib) Then Return Local $detector = $dlib.get_frontal_face_detector() Local $win = _Dlib_ObjCreate("image_window") Local $image_path = _Dlib_FindFile("examples\faces\2008_002470.jpg") Local $img = $dlib.load_rgb_image($image_path) $win.set_image($img) ; The 1 in the second argument indicates that we should upsample the image ; 1 time. This will make everything bigger and allow us to detect more ; faces. Local $dets = $detector.call($img, 1) ConsoleWrite("Number of faces detected: " & UBound($dets) & @CRLF) Local $d For $i = 0 To UBound($dets) - 1 $d = $dets[$i] ConsoleWrite(StringFormat("Detection %d: Left: %d Top: %d Right: %d Bottom: %d", _ $i, $d.left(), $d.top(), $d.right(), $d.bottom()) & @CRLF) Next $win.add_overlay($dets) hit_to_continue() EndFunc ;==>Example Func hit_to_continue() ToolTip("Hit ESC to continue", 0, 0) ConsoleWrite("Hit ESC to continue" & @CRLF) Do Sleep(50) Until _IsPressed("1B") EndFunc ;==>hit_to_continue Func _OnAutoItExit() _Dlib_Close() EndFunc ;==>_OnAutoItExit Camera face detection using opencv First, download the opencv UDF from here expandcollapse popup#Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** #include <Misc.au3> #include "autoit-dlib-com\udf\dlib_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Dlib_Open("opencv-4.7.0-windows\opencv\build\x64\vc16\bin\opencv_world470.dll", "autoit-dlib-com\autoit_dlib_com-19.24-470.dll") _OpenCV_Open("opencv-4.7.0-windows\opencv\build\x64\vc16\bin\opencv_world470.dll", "autoit-opencv-com\autoit_opencv_com470.dll") OnAutoItExitRegister("_OnAutoItExit") Example() Func Example() Local Const $dlib = _Dlib_get() If Not IsObj($dlib) Then Return Local Const $cv = _OpenCV_get() If Not IsObj($cv) Then Return Local $detector = $dlib.get_frontal_face_detector() Local $cam = _OpenCV_ObjCreate("VideoCapture").create(0) Local $color_green = _OpenCV_Tuple(0, 255, 0) Local $line_width = 3 Local $img, $dets, $det While True If $cam.read() Then $img = $cv.extended[1] $dets = $detector.call($img) For $i = 0 To UBound($dets) - 1 $det = $dets[$i] $cv.rectangle($img, _OpenCV_Tuple($det.left(), $det.top()), _OpenCV_Tuple($det.right(), $det.bottom()), $color_green, $line_width) Next ;; Flip the image horizontally to give the mirror impression $cv.imshow("my webcam", $cv.flip($img, 1)) EndIf If _IsPressed("1B") Then ExitLoop ; esc to quit EndIf Sleep(1) WEnd $cv.destroyAllWindows() EndFunc ;==>Example Func _OnAutoItExit() _OpenCV_Close() _Dlib_Close() EndFunc ;==>_OnAutoItExit Edited June 30, 2024 by smbape Update dlib to 19.24.4 Danyfirex, KaFu, malcev and 1 other 4
malcev Posted February 28, 2023 Posted February 28, 2023 Great. Very good library for face recognitio!! Thank You! What the next? May be DeepFace? https://github.com/serengil/deepface
KaFu Posted yesterday at 12:34 PM Posted yesterday at 12:34 PM Hi @smbape, thanks a lot for this great UDF 😊! Finally a solution I got to work, that can perform face recognition and matching. I used your https://github.com/smbape/node-autoit-dlib-com?tab=readme-ov-file#running-examples guidance to set-up the environment and manually downloaded the two additional dlib-models required. expandcollapse popup#Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ; Dlib UDF by smbape ; https://www.autoitscript.com/forum/topic/207773-dlib-udf/ ; Dlib Face Recognition example by KaFu ; https://github.com/davisking/dlib/blob/v19.24/python_examples/face_recognition.py #include <Misc.au3> #include "..\autoit-dlib-com\udf\dlib_udf_utils.au3" ; sample - one of the faces from the example gallery picture "2007_007763.jpg" Local $a_128D_Face_Descriptor_of_Face_to_look_for[129] = [128, -0.091833, 0.0675418, 0.00142617, -0.0139504, -0.0903373, -0.0616875, -0.0384285, -0.14486, 0.0820726, -0.0852851, 0.17568, -0.0610356, -0.145164, -0.0266639, -0.0164959, 0.113634, -0.124758, -0.103387, -0.146446, -0.045612, 0.00516588, -9.29451E-05, 0.0863597, 0.0242456, -0.14534, -0.328905, -0.123818, -0.0685623, 0.0621051, 0.00807183, 0.0105838, 0.0424884, -0.254334, -0.118144, 0.0365846, 0.0897826, -0.0123099, -0.0522731, 0.226144, 0.0407339, -0.18469, 0.0978772, 0.049654, 0.260682, 0.230801, -0.0613484, 0.0384872, -0.0580775, 0.070347, -0.190347, 0.0539085, 0.122605, 0.136734, 0.0766652, -0.029859, -0.040169, 0.0905577, 0.16567, -0.184592, 0.0334291, 0.131489, -0.105992, -0.0602567, 0.043018, 0.142796, 0.110119, -0.086098, -0.164362, 0.0712913, -0.101671, -6.08778E-05, 0.0195526, -0.136251, -0.131349, -0.324134, 0.050356, 0.397348, 0.0955416, -0.193875, 0.0465133, -0.143481, 0.0191909, 0.0440991, 0.0355733, -0.0547336, -0.0449448, -0.105943, 0.0979393, 0.154901, -0.0282238, -0.0588183, 0.193323, 0.00501542, -0.0170646, 0.0698614, 0.130419, -0.161941, -0.0505242, -0.109364, -0.042785, 0.10326, -0.0566043, 0.0215982, 0.107899, -0.215276, 0.213152, -0.0453729, -0.00757293, 0.0653693, -0.0408494, -0.0396944, -0.00927441, 0.126415, -0.17009, 0.166003, 0.15904, -0.0532249, 0.13575, 0.138663, 0.0392869, -0.0467882, 0.0669965, -0.15721, -0.0904878, 0.0118087, 0.0483355, 0.100762, 0.0341779] _Dlib_Open(_Dlib_FindDLL("opencv_world4100*"), _Dlib_FindDLL("autoit_dlib_com-*-4100*")) OnAutoItExitRegister("_OnAutoItExit") Func _OnAutoItExit() _Dlib_Close() EndFunc ;==>_OnAutoItExit Local Const $o_Dlib = _Dlib_get() If Not IsObj($o_Dlib) Then Exit 356 Local $s_Data_Path_Predictor = @ScriptDir & "\data\shape_predictor_5_face_landmarks.dat" ; https://github.com/davisking/dlib-models/raw/master/shape_predictor_5_face_landmarks.dat.bz2 Local $s_Data_Path_Face_Rec_Model = @ScriptDir & "\data\dlib_face_recognition_resnet_model_v1.dat" ; https://github.com/davisking/dlib-models/raw/master/dlib_face_recognition_resnet_model_v1.dat.bz2 ; Load all the models we need: a detector to find the faces, a shape predictor to find face landmarks so we can precisely localize the face, and finally the face recognition model. Local $o_Dlib_Frontal_Face_Detector = $o_Dlib.get_frontal_face_detector() Local $o_Dlib_Shape_Predictor = _Dlib_ObjCreate("shape_predictor").create($s_Data_Path_Predictor) Local $o_Dlib_Face_Rec_Model = _Dlib_ObjCreate("face_recognition_model_v1").create($s_Data_Path_Face_Rec_Model) ; For display of results only, not required for the operation itself Local $o_Dlib_Window = _Dlib_ObjCreate("image_window") Local $a_All_Files_found_to_process = _Dlib_FindFiles("*.jpg", @ScriptDir & "\faces\") ; Now process all the images For $s_Current_File_to_process In $a_All_Files_found_to_process $s_Current_File_to_process = @ScriptDir & "\faces\" & "\" & $s_Current_File_to_process ConsoleWrite(@CRLF & "Processing file: " & $s_Current_File_to_process & @CRLF) $o_Dlib_Image = $o_Dlib.load_rgb_image($s_Current_File_to_process) $o_Dlib_Window.clear_overlay() $o_Dlib_Window.set_title($s_Current_File_to_process) $o_Dlib_Window.set_image($o_Dlib_Image) ; Ask the detector to find the bounding boxes of each face. ; The 1 in the second argument indicates that we should upsample the image 1 time. This will make everything bigger and allow us to detect more faces. ; The third argument to run is an optional adjustment to the detection threshold, where a negative value will return more detections and a positive value fewer. $a_Detected_Faces_Rect = $o_Dlib_Frontal_Face_Detector($o_Dlib_Image, 1, 0) ; $a_Detected_Faces_Rect = $o_Dlib.extended[0] ; same result ConsoleWrite("Number of faces detected in image: " & UBound($a_Detected_Faces_Rect) & @CRLF) ; You can ask the detector to tell you the score for each detection. The score is bigger for more confident detections. $a_Detected_Faces_Confidence_Scores = $o_Dlib.extended[1] ; The idx tells you which of the face sub-detectors matched. This can be used to broadly identify faces in different orientations. $a_Detected_Faces_Matching_Filter_idx = $o_Dlib.extended[2] ; https://github.com/davisking/dlib/blob/master/dlib/image_processing/frontal_face_detector.h ; 1 = front looking ; 2 = left looking ; 3 = right looking ; 4 = front looking but rotated left ; 5 = front looking but rotated right #cs ; Show an overlay of all detected faces in preview window $o_Dlib_All_Rectangles_of_all_detected_Faces = _Dlib_ObjCreate("VectorOfRectangle") For $i_Detected_Faces_Enum = 0 To UBound($a_Detected_Faces_Rect) - 1 $o_Dlib_All_Rectangles_of_all_detected_Faces.Add($a_Detected_Faces_Rect[$i_Detected_Faces_Enum]) Next $o_Dlib_Window.add_overlay($o_Dlib_All_Rectangles_of_all_Faces) #ce ; Now process each face we found. For $i_Detected_Faces_Enum = 0 To UBound($a_Detected_Faces_Rect) - 1 $t_Detected_Face_Rectangle = $a_Detected_Faces_Rect[$i_Detected_Faces_Enum] ConsoleWrite("+ Face #" & $i_Detected_Faces_Enum + 1 & @TAB & @TAB) ConsoleWrite(StringFormat("Left: %d, Top: %d, Right: %d, Bottom: %d", $t_Detected_Face_Rectangle.left(), $t_Detected_Face_Rectangle.top(), $t_Detected_Face_Rectangle.right(), $t_Detected_Face_Rectangle.bottom()) & @CRLF) ConsoleWrite("Confidence score = " & $a_Detected_Faces_Confidence_Scores[$i_Detected_Faces_Enum] & @TAB & @CRLF) ConsoleWrite("Matching filter = " & $a_Detected_Faces_Matching_Filter_idx[$i_Detected_Faces_Enum] & @CRLF) ; Get the landmarks/parts for the face in box $t_Detected_Face_Rectangle $o_Detected_Face_Landmarks_Shape = $o_Dlib_Shape_Predictor($o_Dlib_Image, $t_Detected_Face_Rectangle) ; ; Get the landmarks/parts for the face ConsoleWrite(StringFormat("Landmark 0: %s, Landmark 1: %s ...", $o_Detected_Face_Landmarks_Shape.part(0).ToString(), $o_Detected_Face_Landmarks_Shape.part(1).ToString()) & @CRLF) ; Draw the face landmarks on the screen so we can see what face is currently being processed. $o_Dlib_Window.clear_overlay() $o_Dlib_Window.add_overlay($t_Detected_Face_Rectangle) $o_Dlib_Window.add_overlay($o_Detected_Face_Landmarks_Shape) ; Compute the 128D vector that describes the face in img identified by shape. ; It should also be noted that you can also call this function like this: ; face_descriptor = facerec.compute_face_descriptor(img, shape, 100, 0.25) ; The version of the call without the 100 gets 99.13% accuracy on LFW while the version with 100 gets 99.38%. However, the 100 makes the call 100x slower to execute, so choose whatever version you like. To explain a little, the 3rd argument tells the code how many times to ; jitter/resample the image. When you set it to 100 it executes the face descriptor extraction 100 times on slightly modified versions of the face and returns the average result. You could also pick a more middle value, such as 10, which is only 10x slower but still gets an ; LFW accuracy of 99.3%. 4th value (0.25) is padding around the face. If padding == 0 then the chip will be closely cropped around the face. Setting larger padding values will result a looser cropping. In particular, a padding of 0.5 would double the width of the cropped area, a value of ; would triple it, and so forth. There is another overload of compute_face_descriptor that can take as an input an aligned image. ConsoleWrite("Computing 128D face description vector..." & @CRLF) $o_Detected_Face_Descriptor = $o_Dlib_Face_Rec_Model.compute_face_descriptor($o_Dlib_Image, $o_Detected_Face_Landmarks_Shape) ; $o_Detected_Face_Descriptor = $o_Dlib_Face_Rec_Model.compute_face_descriptor($o_Dlib_Image, $o_Detected_Face_Landmarks_Shape, 4, 1) ConsoleWrite("$o_Detected_Face_Descriptor.ToString() = " & @TAB & @TAB & @TAB & StringReplace($o_Detected_Face_Descriptor.ToString(), @LF, ",") & @CRLF) ; It is important to generate the aligned image as dlib.get_face_chip would do it i.e. the size must be 150x150, centered and scaled. ConsoleWrite("Computing description on aligned image..." & @CRLF) ; Let's generate the aligned image using get_face_chip $o_Detected_Face_Chip_Aligned_Image = $o_Dlib.get_face_chip($o_Dlib_Image, $o_Detected_Face_Landmarks_Shape) ; https://dlib.net/python/#dlib_pybind11.get_face_chip #cs ; Show 5 jittered images without data augmentation Local $a_Jittered_Images = $o_Dlib.jitter_image($o_Detected_Face_Chip_Aligned_Image, 5) show_jittered_images($o_Dlib_Window, $a_Jittered_Images) ; Show 5 jittered images with data augmentation $a_Jittered_Images = $o_Dlib.jitter_image($o_Detected_Face_Chip_Aligned_Image, 5, True) show_jittered_images($o_Dlib_Window, $a_Jittered_Images) #ce ; Now we simply pass this chip (aligned image) to the api $o_Detected_Face_Descriptor_from_prealigned_image = $o_Dlib_Face_Rec_Model.compute_face_descriptor($o_Detected_Face_Chip_Aligned_Image) ConsoleWrite("$o_Detected_Face_Descriptor_from_prealigned_image.ToString() = " & @TAB & StringReplace($o_Detected_Face_Descriptor_from_prealigned_image.ToString(), @LF, ",") & @CRLF) $a_Detected_Face_Descriptor_128D = StringSplit($o_Detected_Face_Descriptor_from_prealigned_image.ToString(), @LF) If Not IsArray($a_128D_Face_Descriptor_of_Face_to_look_for) Then ; if no target has been set yet, use the first face found as pattern for the search If UBound($a_Detected_Face_Descriptor_128D) = 129 Then $a_128D_Face_Descriptor_of_Face_to_look_for = $a_Detected_Face_Descriptor_128D #cs ; manually create 128D target descriptor $s_128D_Face_Descriptor_of_Face_to_look_for = "$a_128D_Face_Descriptor_of_Face_to_look_for[129] = [128" For $i = 1 To 128 $s_128D_Face_Descriptor_of_Face_to_look_for &= "," & $a_128D_Face_Descriptor_of_Face_to_look_for[$i] Next $s_128D_Face_Descriptor_of_Face_to_look_for &= "]" ConsoleWrite($s_128D_Face_Descriptor_of_Face_to_look_for & @CRLF) #ce ContinueLoop 2 Else ContinueLoop ; Descriptor not valid EndIf EndIf $i_128D_Euclidean_Distance = _Euclidean_Distance_of_128D_Vectors($a_Detected_Face_Descriptor_128D, $a_128D_Face_Descriptor_of_Face_to_look_for) If $i_128D_Euclidean_Distance <= 0.5 Then ; Possible match ConsoleWrite("+ Possible MATCH, Euclidean Distance = " & @TAB & $i_128D_Euclidean_Distance & @CRLF) MsgBox(32, "Dlib Face Recognition result - Possible MATCH", "Possible Face MATCH found" & @CRLF & @CRLF _ & "Euclidean Distance to Face to look for = " & $i_128D_Euclidean_Distance _ & @CRLF & @CRLF & @CRLF & @CRLF & @CRLF & @CRLF _ & "In general, if two face descriptor vectors have a Euclidean distance between them less than 0.6 then they are from the same person, otherwise they are from different people." & @CRLF & @CRLF _ & "KaFu: I found 0.5 to be more accurate, more testing required") Else ; No match ConsoleWrite("- Face does not seem to match, Euclidean Distance = " & @TAB & $i_128D_Euclidean_Distance & @CRLF) MsgBox(48, "Dlib Face Recognition result - Not matching", "Face does not seem to match" & @CRLF & @CRLF _ & "Euclidean Distance to Face to look for = " & $i_128D_Euclidean_Distance _ & @CRLF & @CRLF & @CRLF & @CRLF & @CRLF & @CRLF _ & "In general, if two face descriptor vectors have a Euclidean distance between them less than 0.6 then they are from the same person, otherwise they are from different people." & @CRLF & @CRLF _ & "KaFu: I found 0.5 to be more accurate, more testing required") EndIf Next Next Func _Euclidean_Distance_of_128D_Vectors($a_Vector_1, $a_Vector_2) If UBound($a_Vector_1) <> 129 Then Return SetError(1, 0, -1) ; 1-based 128 array required If UBound($a_Vector_2) <> 129 Then Return SetError(2, 0, -1) ; https://en.wikipedia.org/wiki/Euclidean_distance Local $i_Euclidean_Distance_of_128D_Vectors For $i = 1 To 128 $i_Euclidean_Distance_of_128D_Vectors += ($a_Vector_1[$i] - $a_Vector_2[$i]) ^ 2 ; ConsoleWrite("_Euclidean_Distance_of_128D_Vectors = " & $i & @TAB & $i_128D_Vector_Euclidean_Distance & @TAB & $a_Vector_1[$i] & @TAB & $a_Vector_2[$i] & @CRLF) Next Return Sqrt($i_Euclidean_Distance_of_128D_Vectors) EndFunc ;==>_Euclidean_Distance_of_128D_Vectors Func show_jittered_images($window, $jittered_images) ; Shows the specified jittered images one by one For $i = 0 To UBound($jittered_images) - 1 Local $img = $jittered_images[$i] $window.set_image($img) MsgBox(0, "show_jittered_images", "jittered image " & $i & ": ") Next EndFunc ;==>show_jittered_images Currently the dll is compiled for 64bit, maybe you could provide a 32bit version too? Your effort is much appreciated 👍! OS: Win10-22H2 - 64bit - German, AutoIt Version: 3.3.16.1, AutoIt Editor: SciTE, Website: https://funk.eu AMT - Auto-Movie-Thumbnailer (2024-Oct-13) BIC - Batch-Image-Cropper (2023-Apr-01) COP - Color Picker (2009-May-21) DCS - Dynamic Cursor Selector (2024-Oct-13) HMW - Hide my Windows (2024-Oct-19) HRC - HotKey Resolution Changer (2012-May-16) ICU - Icon Configuration Utility (2018-Sep-16) SMF - Search my Files (2024-Oct-20) - THE file info and duplicates search tool SSD - Set Sound Device (2017-Sep-16)
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now