Leaderboard
Popular Content
Showing content with the highest reputation on 12/23/2022 in all areas
-
After a long hesitation about whether it would be fun to do or not, I finally did it. This UDF provides a way to use mediapipe in AutoIt The usage is similar to the python usage of mediapipe Prerequisites Download and extract autoit-mediapipe-0.10.14-opencv-4.10.0-com-v0.4.1.7z into a folder Download the opencv UDF from here Sources Here Documentation A generated documentation for functions is available here Examples More examples can be found here To run them, please follow these instructions Face Detection with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/face_detector/python/face_detector.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/face_detector/python/face_detector.ipynb ;~ Title: Face Detection with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" ; STEP 1: Import the necessary modules. Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Main() Func Main() Local $_IMAGE_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\brother-sister-girl-family-boy-977170.jpg" Local $_IMAGE_URL = "https://i.imgur.com/Vu2Nqwb.jpg" Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\blaze_face_short_range.tflite" Local $_MODEL_URL = "https://storage.googleapis.com/mediapipe-models/face_detector/blaze_face_short_range/float16/1/blaze_face_short_range.tflite" Local $url, $file_path Local $sample_files[] = [ _ _Mediapipe_Tuple($_IMAGE_FILE, $_IMAGE_URL), _ _Mediapipe_Tuple($_MODEL_FILE, $_MODEL_URL) _ ] For $config In $sample_files $file_path = $config[0] $url = $config[1] If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next ; Compute the scale to make drawn elements visible when the image is resized for display Local $scale = 1 / resize_and_show($cv.imread($_IMAGE_FILE), Default, False) ; STEP 2: Create an FaceDetector object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.FaceDetectorOptions(_Mediapipe_Params("base_options", $base_options)) Local $detector = $vision.FaceDetector.create_from_options($options) ; STEP 3: Load the input image. Local $image = $mp.Image.create_from_file($_IMAGE_FILE) ; STEP 4: Detect faces in the input image. Local $detection_result = $detector.detect($image) ; STEP 5: Process the detection result. In this case, visualize it. Local $image_copy = $image.mat_view() Local $annotated_image = visualize($image_copy, $detection_result, $scale) Local $bgr_annotated_image = $cv.cvtColor($annotated_image, $CV_COLOR_RGB2BGR) resize_and_show($bgr_annotated_image, "face_detector") $cv.waitKey() ; STEP 6: Closes the detector explicitly when the detector is not used in a context. $detector.close() EndFunc ;==>Main Func isclose($a, $b) Return Abs($a - $b) <= 1E-6 EndFunc ;==>isclose ; Checks if the float value is between 0 and 1. Func is_valid_normalized_value($value) Return $value >= 0 And $value <= 1 Or isclose(0, $value) Or isclose(1, $value) EndFunc ;==>is_valid_normalized_value #cs Converts normalized value pair to pixel coordinates. #ce Func _normalized_to_pixel_coordinates($normalized_x, $normalized_y, $image_width, $image_height) If Not (is_valid_normalized_value($normalized_x) And is_valid_normalized_value($normalized_y)) Then ; TODO: Draw coordinates even if it's outside of the image bounds. Return Default EndIf Local $x_px = _Min(Floor($normalized_x * $image_width), $image_width - 1) Local $y_px = _Min(Floor($normalized_y * $image_height), $image_height - 1) Return _OpenCV_Point($x_px, $y_px) EndFunc ;==>_normalized_to_pixel_coordinates #cs Draws bounding boxes and keypoints on the input image and return it. Args: image: The input RGB image. detection_result: The list of all "Detection" entities to be visualize. Returns: Image with bounding boxes. #ce Func visualize($image, $detection_result, $scale = 1.0) Local $MARGIN = 10 * $scale ; pixels Local $ROW_SIZE = 10 ; pixels Local $FONT_SIZE = $scale Local $FONT_THICKNESS = 2 * $scale Local $TEXT_COLOR = _OpenCV_Scalar(255, 0, 0) ; red Local $bbox_thickness = 3 * $scale Local $keypoint_color = _OpenCV_Scalar(0, 255, 0) Local $keypoint_thickness = 2 * $scale Local $keypoint_radius = 2 * $scale Local $annotated_image = $image.copy() Local $width = $image.width Local $height = $image.height Local $bbox, $start_point, $end_point, $keypoint_px Local $category, $category_name, $probability, $result_text, $text_location For $detection In $detection_result.detections ; Draw bounding_box $bbox = $detection.bounding_box $start_point = _OpenCV_Point($bbox.origin_x, $bbox.origin_y) $end_point = _OpenCV_Point($bbox.origin_x + $bbox.width, $bbox.origin_y + $bbox.height) $cv.rectangle($annotated_image, $start_point, $end_point, $TEXT_COLOR, $bbox_thickness) ; Draw keypoints For $keypoint In $detection.keypoints $keypoint_px = _normalized_to_pixel_coordinates($keypoint.x, $keypoint.y, $width, $height) $cv.circle($annotated_image, $keypoint_px, $keypoint_thickness, $keypoint_color, $keypoint_radius) Next ; Draw label and score $category = $detection.categories(0) $category_name = $category.category_name $probability = Round($category.score, 2) $result_text = $category_name & ' (' & $probability & ')' $text_location = _OpenCV_Point($MARGIN + $bbox.origin_x, $MARGIN + $ROW_SIZE + $bbox.origin_y) $cv.putText($annotated_image, $result_text, $text_location, $CV_FONT_HERSHEY_PLAIN, $FONT_SIZE, $TEXT_COLOR, $FONT_THICKNESS) Next Return $annotated_image EndFunc ;==>visualize Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Face Landmarks Detection with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/face_landmarker/python/[MediaPipe_Python_Tasks]_Face_Landmarker.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/face_landmarker/python/[MediaPipe_Python_Tasks]_Face_Landmarker.ipynb ;~ Title: Face Landmarks Detection with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" ; STEP 1: Import the necessary modules. Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") Global $solutions = _Mediapipe_ObjCreate("mediapipe.solutions") _AssertIsObj($solutions, "Failed to load mediapipe.solutions") Global $landmark_pb2 = _Mediapipe_ObjCreate("mediapipe.framework.formats.landmark_pb2") _AssertIsObj($landmark_pb2, "Failed to load mediapipe.framework.formats.landmark_pb2") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Main() Func Main() Local $_IMAGE_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\business-person.png" Local $_IMAGE_URL = "https://storage.googleapis.com/mediapipe-assets/business-person.png" Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\face_landmarker.task" Local $_MODEL_URL = "https://storage.googleapis.com/mediapipe-models/face_landmarker/face_landmarker/float16/1/face_landmarker.task" Local $url, $file_path Local $sample_files[] = [ _ _Mediapipe_Tuple($_IMAGE_FILE, $_IMAGE_URL), _ _Mediapipe_Tuple($_MODEL_FILE, $_MODEL_URL) _ ] For $config In $sample_files $file_path = $config[0] $url = $config[1] If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next ; STEP 2: Create an FaceLandmarker object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.FaceLandmarkerOptions(_Mediapipe_Params("base_options", $base_options, _ "output_face_blendshapes", True, _ "output_facial_transformation_matrixes", True, _ "num_faces", 1)) Local $detector = $vision.FaceLandmarker.create_from_options($options) ; STEP 3: Load the input image. Local $image = $mp.Image.create_from_file($_IMAGE_FILE) ; STEP 4: Detect hand landmarks from the input image. Local $detection_result = $detector.detect($image) ; STEP 5: Process the classification result. In this case, visualize it. Local $annotated_image = draw_landmarks_on_image($image.mat_view(), $detection_result) resize_and_show($cv.cvtColor($annotated_image, $CV_COLOR_RGB2BGR)) $cv.waitKey() ; STEP 6: Closes the face detector explicitly when the face detector is not used in a context. $detector.close() EndFunc ;==>Main Func draw_landmarks_on_image($rgb_image, $detection_result) ; Compute the scale to make drawn elements visible when the image is resized for display Local $scale = 1 / resize_and_show($rgb_image, Default, False) Local $face_landmarks_list = $detection_result.face_landmarks Local $annotated_image = $rgb_image.copy() Local $face_landmarks_proto ; Loop through the detected faces to visualize. For $face_landmarks In $face_landmarks_list ; Draw the face landmarks. $face_landmarks_proto = $landmark_pb2.NormalizedLandmarkList() For $landmark In $face_landmarks $face_landmarks_proto.landmark.append($landmark_pb2.NormalizedLandmark(_Mediapipe_Params("x", $landmark.x, "y", $landmark.y, "z", $landmark.z))) Next $solutions.drawing_utils.draw_landmarks(_Mediapipe_Params( _ "image", $annotated_image, _ "landmark_list", $face_landmarks_proto, _ "connections", $solutions.face_mesh.FACEMESH_TESSELATION, _ "landmark_drawing_spec", Null, _ "connection_drawing_spec", $solutions.drawing_styles.get_default_face_mesh_tesselation_style($scale))) $solutions.drawing_utils.draw_landmarks(_Mediapipe_Params( _ "image", $annotated_image, _ "landmark_list", $face_landmarks_proto, _ "connections", $solutions.face_mesh.FACEMESH_CONTOURS, _ "landmark_drawing_spec", Null, _ "connection_drawing_spec", $solutions.drawing_styles.get_default_face_mesh_contours_style(0, $scale))) $solutions.drawing_utils.draw_landmarks(_Mediapipe_Params( _ "image", $annotated_image, _ "landmark_list", $face_landmarks_proto, _ "connections", $solutions.face_mesh.FACEMESH_IRISES, _ "landmark_drawing_spec", Null, _ "connection_drawing_spec", $solutions.drawing_styles.get_default_face_mesh_iris_connections_style($scale))) Next Return $annotated_image EndFunc ;==>draw_landmarks_on_image Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Face Stylizer #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/face_stylizer/python/face_stylizer.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/face_stylizer/python/face_stylizer.ipynb ;~ Title: Face Stylizer #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" ; STEP 1: Import the necessary modules. Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Main() Func Main() Local $_IMAGE_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\business-person.png" Local $_IMAGE_URL = "https://storage.googleapis.com/mediapipe-assets/business-person.png" Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\face_stylizer_color_sketch.task" Local $_MODEL_URL = "https://storage.googleapis.com/mediapipe-models/face_stylizer/blaze_face_stylizer/float32/latest/face_stylizer_color_sketch.task" Local $url, $file_path Local $sample_files[] = [ _ _Mediapipe_Tuple($_IMAGE_FILE, $_IMAGE_URL), _ _Mediapipe_Tuple($_MODEL_FILE, $_MODEL_URL) _ ] For $config In $sample_files $file_path = $config[0] $url = $config[1] If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next ; Preview the images. resize_and_show($cv.imread($_IMAGE_FILE), "face_stylizer: preview") ; STEP 2: Create an FaceLandmarker object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.FaceStylizerOptions(_Mediapipe_Params("base_options", $base_options)) Local $stylizer = $vision.FaceStylizer.create_from_options($options) ; STEP 3: Load the input image. Local $image = $mp.Image.create_from_file($_IMAGE_FILE) ; STEP 4: Retrieve the stylized image Local $stylized_image = $stylizer.stylize($image) ; STEP 5: Show the stylized image Local $rgb_stylized_image = $cv.cvtColor($stylized_image.mat_view(), $CV_COLOR_RGB2BGR) resize_and_show($rgb_stylized_image, "face_stylizer: stylized") $cv.waitKey() ; STEP 6: Closes the stylizer explicitly when the stylizer is not used in a context. $stylizer.close() EndFunc ;==>Main Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Gesture Recognizer with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/gesture_recognizer/python/gesture_recognizer.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/gesture_recognizer/python/gesture_recognizer.ipynb ;~ Title: Gesture Recognizer with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $landmark_pb2 = _Mediapipe_ObjCreate("mediapipe.framework.formats.landmark_pb2") _AssertIsObj($landmark_pb2, "Failed to load mediapipe.framework.formats.landmark_pb2") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Global $mp_hands = $mp.solutions.hands Global $mp_drawing = $mp.solutions.drawing_utils Global $mp_drawing_styles = $mp.solutions.drawing_styles Main() Func Main() Local $IMAGE_FILENAMES[] = ['thumbs_down.jpg', 'victory.jpg', 'thumbs_up.jpg', 'pointing_up.jpg'] Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\gesture_recognizer.task" Local $_MODEL_URL = "https://storage.googleapis.com/mediapipe-models/gesture_recognizer/gesture_recognizer/float16/1/gesture_recognizer.task" Local $sample_files[UBound($IMAGE_FILENAMES) + 1] $sample_files[0] = _Mediapipe_Tuple($_MODEL_FILE, $_MODEL_URL) Local $url, $file_path, $name For $i = 0 To UBound($IMAGE_FILENAMES) - 1 $name = $IMAGE_FILENAMES[$i] $file_path = $MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $name $url = "https://storage.googleapis.com/mediapipe-tasks/gesture_recognizer/" & $name $sample_files[$i + 1] = _Mediapipe_Tuple($file_path, $url) Next For $config In $sample_files $file_path = $config[0] $url = $config[1] If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next ; STEP 2: Create an GestureRecognizer object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.GestureRecognizerOptions(_Mediapipe_Params("base_options", $base_options)) Local $recognizer = $vision.GestureRecognizer.create_from_options($options) Local $image, $recognition_result, $top_gesture, $hands_landmarks For $image_file_name In $IMAGE_FILENAMES ; STEP 3: Load the input image. $image = $mp.Image.create_from_file($MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $image_file_name) ; STEP 4: Recognize gestures in the input image. $recognition_result = $recognizer.recognize($image) ; STEP 5: Process the result. In this case, visualize it. $top_gesture = $recognition_result.gestures(0) (0) $hands_landmarks = $recognition_result.hand_landmarks display_image_with_gestures_and_hand_landmarks($image, $top_gesture, $hands_landmarks) Next $cv.waitKey() ; STEP 6: Closes the gesture recognizer explicitly when the gesture recognizer is not used in a context. $recognizer.close() EndFunc ;==>Main #cs Displays an image with the gesture category and its score along with the hand landmarks. #ce Func display_image_with_gestures_and_hand_landmarks($image, $gesture, $hands_landmarks) ; Display gestures and hand landmarks. Local $annotated_image = $cv.cvtColor($image.mat_view(), $CV_COLOR_RGB2BGR) Local $title = StringFormat("%s (%.2f)", $gesture.category_name, $gesture.score) ; Compute the scale to make drawn elements visible when the image is resized for display Local $scale = 1 / resize_and_show($annotated_image, Default, False) Local $hand_landmarks_proto For $hand_landmarks In $hands_landmarks $hand_landmarks_proto = $landmark_pb2.NormalizedLandmarkList() For $landmark In $hand_landmarks $hand_landmarks_proto.landmark.append($landmark_pb2.NormalizedLandmark(_Mediapipe_Params("x", $landmark.x, "y", $landmark.y, "z", $landmark.z))) Next $mp_drawing.draw_landmarks( _ $annotated_image, _ $hand_landmarks_proto, _ $mp_hands.HAND_CONNECTIONS, _ $mp_drawing_styles.get_default_hand_landmarks_style($scale), _ $mp_drawing_styles.get_default_hand_connections_style($scale)) Next resize_and_show($annotated_image, $title) EndFunc ;==>display_image_with_gestures_and_hand_landmarks Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Hand Landmarks Detection with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/hand_landmarker/python/hand_landmarker.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/hand_landmarker/python/hand_landmarker.ipynb ;~ Title: Hand Landmarks Detection with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $solutions = _Mediapipe_ObjCreate("mediapipe.solutions") _AssertIsObj($solutions, "Failed to load mediapipe.solutions") Global $landmark_pb2 = _Mediapipe_ObjCreate("mediapipe.framework.formats.landmark_pb2") _AssertIsObj($landmark_pb2, "Failed to load mediapipe.framework.formats.landmark_pb2") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Global $mp_hands = $mp.solutions.hands Global $mp_drawing = $mp.solutions.drawing_utils Global $mp_drawing_styles = $mp.solutions.drawing_styles Main() Func Main() Local $_IMAGE_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\woman_hands.jpg" Local $_IMAGE_URL = "https://storage.googleapis.com/mediapipe-tasks/hand_landmarker/woman_hands.jpg" Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\hand_landmarker.task" Local $_MODEL_URL = "https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task" Local $url, $file_path Local $sample_files[] = [ _ _Mediapipe_Tuple($_IMAGE_FILE, $_IMAGE_URL), _ _Mediapipe_Tuple($_MODEL_FILE, $_MODEL_URL) _ ] For $config In $sample_files $file_path = $config[0] $url = $config[1] If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next ; STEP 2: Create an ImageClassifier object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.HandLandmarkerOptions(_Mediapipe_Params("base_options", $base_options, _ "num_hands", 2)) Local $detector = $vision.HandLandmarker.create_from_options($options) ; STEP 3: Load the input image. Local $image = $mp.Image.create_from_file($_IMAGE_FILE) ; STEP 4: Detect hand landmarks from the input image. Local $detection_result = $detector.detect($image) ; STEP 5: Process the classification result. In this case, visualize it. Local $annotated_image = draw_landmarks_on_image($image.mat_view(), $detection_result) resize_and_show($cv.cvtColor($annotated_image, $CV_COLOR_RGB2BGR)) $cv.waitKey() ; STEP 6: Closes the hand detector explicitly when the hand detector is not used in a context. $detector.close() EndFunc ;==>Main Func draw_landmarks_on_image($rgb_image, $detection_result) ; Compute the scale to make drawn elements visible when the image is resized for display Local $scale = 1 / resize_and_show($rgb_image, Default, False) Local $MARGIN = 10 * $scale ; pixels Local $FONT_SIZE = $scale Local $FONT_THICKNESS = 2 * $scale Local $HANDEDNESS_TEXT_COLOR = _OpenCV_Scalar(88, 205, 54) ; vibrant green Local $hand_landmarks_list = $detection_result.hand_landmarks Local $handedness_list = $detection_result.handedness Local $annotated_image = $rgb_image.copy() Local $width = $annotated_image.width Local $height = $annotated_image.height Local $hand_landmarks, $handedness, $hand_landmarks_proto Local $min_x, $min_y, $text_x, $text_y ; Loop through the detected hands to visualize. For $idx = 0 To $hand_landmarks_list.size() - 1 $hand_landmarks = $hand_landmarks_list($idx) $handedness = $handedness_list($idx) $min_x = 1 $min_y = 1 ; Draw the hand landmarks. $hand_landmarks_proto = $landmark_pb2.NormalizedLandmarkList() For $landmark In $hand_landmarks $hand_landmarks_proto.landmark.append($landmark_pb2.NormalizedLandmark(_Mediapipe_Params("x", $landmark.x, "y", $landmark.y, "z", $landmark.z))) If $landmark.x < $min_x Then $min_x = $landmark.x If $landmark.y < $min_y Then $min_y = $landmark.y Next $solutions.drawing_utils.draw_landmarks( _ $annotated_image, _ $hand_landmarks_proto, _ $solutions.hands.HAND_CONNECTIONS, _ $solutions.drawing_styles.get_default_hand_landmarks_style($scale), _ $solutions.drawing_styles.get_default_hand_connections_style($scale)) ; Get the top left corner of the detected hand's bounding box. $text_x = $min_x * $width $text_y = $min_y * $height - $MARGIN ; Draw handedness (left or right hand) on the image. $cv.putText($annotated_image, $handedness(0).category_name, _ _OpenCV_Point($text_x, $text_y), $CV_FONT_HERSHEY_DUPLEX, _ $FONT_SIZE, $HANDEDNESS_TEXT_COLOR, $FONT_THICKNESS, $CV_LINE_AA) Next Return $annotated_image EndFunc ;==>draw_landmarks_on_image Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "image" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Image Classifier with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/image_classification/python/image_classifier.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/image_classification/python/image_classifier.ipynb ;~ Title: Image Classifier with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Main() Func Main() Local $IMAGE_FILENAMES[] = ['burger.jpg', 'cat.jpg'] Local $url, $file_path For $name In $IMAGE_FILENAMES $file_path = $MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $name $url = "https://storage.googleapis.com/mediapipe-tasks/image_classifier/" & $name If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\efficientnet_lite0.tflite" If Not FileExists($_MODEL_FILE) Then $download_utils.download("https://storage.googleapis.com/mediapipe-models/image_classifier/efficientnet_lite0/float32/1/efficientnet_lite0.tflite", $_MODEL_FILE) EndIf ; STEP 2: Create an ImageClassifier object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.ImageClassifierOptions(_Mediapipe_Params("base_options", $base_options, "max_results", 4)) Local $classifier = $vision.ImageClassifier.create_from_options($options) Local $image, $classification_result, $top_category, $title For $image_name In $IMAGE_FILENAMES ; STEP 3: Load the input image. $image = $mp.Image.create_from_file($MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $image_name) ; STEP 4: Classify the input image. $classification_result = $classifier.classify($image) ; STEP 5: Process the classification result. In this case, visualize it. $top_category = $classification_result.classifications(0).categories(0) $title = StringFormat("%s (%.2f)", $top_category.category_name, $top_category.score) resize_and_show($cv.cvtColor($image.mat_view(), $CV_COLOR_RGB2BGR), $title) Next $cv.waitKey() ; STEP 5: Closes the classifier explicitly when the classifier is not used in a context. $classifier.close() EndFunc ;==>Main Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Image Embedding with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/image_embedder/python/image_embedder.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/image_embedder/python/image_embedder.ipynb ;~ Title: Image Embedding with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Global $cosine_similarity = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.components.utils.cosine_similarity") _AssertIsObj($cosine_similarity, "Failed to load mediapipe.tasks.autoit.components.utils.cosine_similarity") Main() Func Main() Local $IMAGE_FILENAMES[] = ['burger.jpg', 'burger_crop.jpg'] Local $url, $file_path For $name In $IMAGE_FILENAMES $file_path = $MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $name $url = "https://storage.googleapis.com/mediapipe-assets/" & $name If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\mobilenet_v3_small.tflite" If Not FileExists($_MODEL_FILE) Then $download_utils.download("https://storage.googleapis.com/mediapipe-models/image_embedder/mobilenet_v3_small/float32/1/mobilenet_v3_small.tflite", $_MODEL_FILE) EndIf ; Create options for Image Embedder Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $l2_normalize = True ;@param {type:"boolean"} Local $quantize = True ;@param {type:"boolean"} Local $options = $vision.ImageEmbedderOptions(_Mediapipe_Params( _ "base_options", $base_options, _ "l2_normalize", $l2_normalize, _ "quantize", $quantize)) ; Create Image Embedder Local $embedder = $vision.ImageEmbedder.create_from_options($options) ; Format images for MediaPipe Local $first_image = $mp.Image.create_from_file($MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $IMAGE_FILENAMES[0]) Local $second_image = $mp.Image.create_from_file($MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $IMAGE_FILENAMES[1]) Local $first_embedding_result = $embedder.embed($first_image) Local $second_embedding_result = $embedder.embed($second_image) Local $similarity = $cosine_similarity.cosine_similarity($first_embedding_result.embeddings(0), $second_embedding_result.embeddings(0)) ConsoleWrite('@@ Debug(' & @ScriptLineNumber & ') : $similarity = ' & $similarity & @CRLF) ;### Debug Console resize_and_show($cv.cvtColor($first_image.mat_view(), $CV_COLOR_RGB2BGR), $IMAGE_FILENAMES[0]) resize_and_show($cv.cvtColor($second_image.mat_view(), $CV_COLOR_RGB2BGR), $IMAGE_FILENAMES[1]) $cv.waitKey() ; Closes the embedder explicitly when the embedder is not used in a context. $embedder.close() EndFunc ;==>Main Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Image Segmenter #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/image_segmentation/python/image_segmentation.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/image_segmentation/python/image_segmentation.ipynb ;~ Title: Image Segmenter #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Main() Func Main() Local $IMAGE_FILENAMES[] = ['segmentation_input_rotation0.jpg'] Local $url, $file_path For $name In $IMAGE_FILENAMES $file_path = $MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $name $url = "https://storage.googleapis.com/mediapipe-assets/" & $name If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\deeplab_v3.tflite" If Not FileExists($_MODEL_FILE) Then $download_utils.download("https://storage.googleapis.com/mediapipe-models/image_segmenter/deeplab_v3/float32/1/deeplab_v3.tflite", $_MODEL_FILE) EndIf Local $BG_COLOR = _OpenCV_Scalar(192, 192, 192) ; gray Local $MASK_COLOR = _OpenCV_Scalar(255, 255, 255) ; white ; Create the options that will be used for ImageSegmenter Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.ImageSegmenterOptions(_Mediapipe_Params("base_options", $base_options, _ "output_category_mask", True)) ; Create the image segmenter Local $segmenter = $vision.ImageSegmenter.create_from_options($options) Local $image, $segmentation_result, $category_mask, $image_data Local $fg_image, $bg_image, $fg_mask Local $output_image, $blurred_image ; Loop through demo image(s) For $image_file_name In $IMAGE_FILENAMES ; Create the MediaPipe image file that will be segmented $image = $mp.Image.create_from_file($MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $image_file_name) ; mediapipe uses RGB images while opencv uses BGR images ; Convert the BGR image to RGB $image_data = $cv.cvtColor($image.mat_view(), $CV_COLOR_RGB2BGR) ; Retrieve the masks for the segmented image $segmentation_result = $segmenter.segment($image) $category_mask = $segmentation_result.category_mask ; Generate solid color images for showing the output segmentation mask. $fg_image = $cv.Mat.create($image_data.size(), $CV_8UC3, $MASK_COLOR) $bg_image = $cv.Mat.create($image_data.size(), $CV_8UC3, $BG_COLOR) ; Foreground mask corresponds to all 'i' pixels where category_mask[i] > 0.2 $fg_mask = $cv.compare($category_mask.mat_view(), 0.2, $CV_CMP_GT) ; Draw fg_image on bg_image based on the segmentation mask. $output_image = $bg_image.copy() $fg_image.copyTo($fg_mask, $output_image) resize_and_show($output_image, 'Segmentation mask of ' & $image_file_name) ; Blur the image background based on the segmentation mask. $blurred_image = $cv.GaussianBlur($image_data, _OpenCV_Size(55, 55), 0) $image_data.copyTo($fg_mask, $blurred_image) resize_and_show($blurred_image, 'Blurred background of ' & $image_file_name) Next $cv.waitKey() ; Closes the segmenter explicitly when the segmenter is not used ina context. $segmenter.close() EndFunc ;==>Main Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Interactive Image Segmenter #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/interactive_segmentation/python/interactive_segmenter.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/interactive_segmentation/python/interactive_segmenter.ipynb ;~ Title: Interactive Image Segmenter #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Global $containers = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.components.containers") _AssertIsObj($containers, "Failed to load mediapipe.tasks.autoit.components.containers") Main() Func Main() Local $IMAGE_FILENAMES[] = ['cats_and_dogs.jpg'] Local $url, $file_path For $name In $IMAGE_FILENAMES $file_path = $MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $name $url = "https://storage.googleapis.com/mediapipe-assets/" & $name If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\magic_touch.tflite" If Not FileExists($_MODEL_FILE) Then $download_utils.download("https://storage.googleapis.com/mediapipe-models/interactive_segmenter/magic_touch/float32/1/magic_touch.tflite", $_MODEL_FILE) EndIf Local $x = 0.68 ;@param {type:"slider", min:0, max:1, step:0.01} Local $y = 0.68 ;@param {type:"slider", min:0, max:1, step:0.01} Local $BG_COLOR = _OpenCV_Scalar(192, 192, 192) ; gray Local $MASK_COLOR = _OpenCV_Scalar(255, 255, 255) ; white Local $OVERLAY_COLOR = _OpenCV_Scalar(100, 100, 0) ; cyan Local $RegionOfInterest_Format = $vision.InteractiveSegmenterRegionOfInterest_Format Local $RegionOfInterest = $vision.InteractiveSegmenterRegionOfInterest Local $NormalizedKeypoint = $containers.keypoint.NormalizedKeypoint ; Create the options that will be used for InteractiveSegmenter Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.InteractiveSegmenterOptions(_Mediapipe_Params("base_options", $base_options, _ "output_category_mask", True)) ; Create the interactive segmenter Local $segmenter = $vision.InteractiveSegmenter.create_from_options($options) Local $image, $roi, $segmentation_result, $category_mask, $image_data Local $fg_image, $bg_image, $fg_mask Local $output_image, $blurred_image, $overlayed_image Local $keypoint_px, $alpha Local $color = _OpenCV_Scalar(255, 255, 0) Local $thickness = 10 Local $radius = 2 Local $scale ; Loop through demo image(s) For $image_file_name In $IMAGE_FILENAMES ; Create the MediaPipe image file that will be segmented $image = $mp.Image.create_from_file($MEDIAPIPE_SAMPLES_DATA_PATH & "\" & $image_file_name) ; Compute the scale to make drawn elements visible when the image is resized for display $scale = 1 / resize_and_show($image.mat_view(), Default, False) ; mediapipe uses RGB images while opencv uses BGR images ; Convert the BGR image to RGB $image_data = $cv.cvtColor($image.mat_view(), $CV_COLOR_RGB2BGR) ; Retrieve the masks for the segmented image $roi = $RegionOfInterest(_Mediapipe_Params("format", $RegionOfInterest_Format.KEYPOINT, _ "keypoint", $NormalizedKeypoint($x, $y))) $segmentation_result = $segmenter.segment($image, $roi) $category_mask = $segmentation_result.category_mask ; Generate solid color images for showing the output segmentation mask. $fg_image = $cv.Mat.create($image_data.size(), $CV_8UC3, $MASK_COLOR) $bg_image = $cv.Mat.create($image_data.size(), $CV_8UC3, $BG_COLOR) ; Foreground mask corresponds to all 'i' pixels where category_mask[i] > 0.1 $fg_mask = $cv.compare($category_mask.mat_view(), 0.1, $CV_CMP_GT) ; Draw fg_image on bg_image based on the segmentation mask. $output_image = $bg_image.copy() $fg_image.copyTo($fg_mask, $output_image) ; Compute the point of interest coordinates $keypoint_px = _normalized_to_pixel_coordinates($x, $y, $image.width, $image.height) ; Draw a circle to denote the point of interest $cv.circle($output_image, $keypoint_px, $thickness * $scale, $color, $radius * $scale) ; Display the segmented image resize_and_show($output_image, 'Segmentation mask of ' & $image_file_name) ; Blur the image background based on the segmentation mask. $blurred_image = $cv.GaussianBlur($image_data, _OpenCV_Size(55, 55), 0) $image_data.copyTo($fg_mask, $blurred_image) ; Draw a circle to denote the point of interest $cv.circle($blurred_image, $keypoint_px, $thickness * $scale, $color, $radius * $scale) ; Display the blurred image resize_and_show($blurred_image, 'Blurred background of ' & $image_file_name) ; Create an overlay image with the desired color (e.g., (255, 0, 0) for red) $overlayed_image = $cv.Mat.create($image_data.size(), $CV_8UC3, $OVERLAY_COLOR) ; Create an alpha channel based on the segmentation mask with the desired opacity (e.g., 0.7 for 70%) ; fg_mask values are 0 where the mask should not apply and 255 where it should ; multiplying by 0.7 / 255.0 gives values that are 0 where the mask should not apply and 0.7 where it should $alpha = $fg_mask.convertTo($CV_32F, Null, 0.7 / 255.0) ; repeat the alpha mask for each image channel color $alpha = $cv.merge(_OpenCV_Tuple($alpha, $alpha, $alpha)) ; Blend the original image and the overlay image based on the alpha channel $overlayed_image = $cv.add($cv.multiply($image_data, $cv.subtract(1.0, $alpha), Null, Default, $CV_32F), $cv.multiply($overlayed_image, $alpha, Null, Default, $CV_32F)) ; Draw a circle to denote the point of interest $cv.circle($overlayed_image, $keypoint_px, $thickness * $scale, $color, $radius * $scale) ; Display the overlayed image resize_and_show($overlayed_image, 'Overlayed foreground of ' & $image_file_name) Next $cv.waitKey() ; Closes the segmenter explicitly when the segmenter is not used ina context. $segmenter.close() EndFunc ;==>Main Func isclose($a, $b) Return Abs($a - $b) <= 1E-6 EndFunc ;==>isclose ; Checks if the float value is between 0 and 1. Func is_valid_normalized_value($value) Return ($value > 0 Or isclose(0, $value)) And ($value < 1 Or isclose(1, $value)) EndFunc ;==>is_valid_normalized_value #cs Converts normalized value pair to pixel coordinates. #ce Func _normalized_to_pixel_coordinates($normalized_x, $normalized_y, $image_width, $image_height) If Not (is_valid_normalized_value($normalized_x) And is_valid_normalized_value($normalized_y)) Then ; TODO: Draw coordinates even if it's outside of the image bounds. Return Default EndIf Local $x_px = _Min(Floor($normalized_x * $image_width), $image_width - 1) Local $y_px = _Min(Floor($normalized_y * $image_height), $image_height - 1) Return _OpenCV_Point($x_px, $y_px) EndFunc ;==>_normalized_to_pixel_coordinates Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Language Detector with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/language_detector/python/[MediaPipe_Python_Tasks]_Language_Detector.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/language_detector/python/[MediaPipe_Python_Tasks]_Language_Detector.ipynb ;~ Title: Language Detector with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" ; STEP 1: Import the necessary modules. Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $text = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.text") _AssertIsObj($text, "Failed to load mediapipe.tasks.autoit.text") Main() Func Main() Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\language_detector.tflite" Local $_MODEL_URL = "https://storage.googleapis.com/mediapipe-models/language_detector/language_detector/float32/latest/language_detector.tflite" Local $url, $file_path Local $sample_files[] = [ _ _Mediapipe_Tuple($_MODEL_FILE, $_MODEL_URL) _ ] For $config In $sample_files $file_path = $config[0] $url = $config[1] If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next ; Define the input text that you wants the model to classify. Local $INPUT_TEXT = "分久必合合久必分" ;@param {type:"string"} ; STEP 2: Create a LanguageDetector object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $text.LanguageDetectorOptions(_Mediapipe_Params("base_options", $base_options)) Local $detector = $text.LanguageDetector.create_from_options($options) ; STEP 3: Get the language detcetion result for the input text. Local $detection_result = $detector.detect($INPUT_TEXT) ; STEP 4: Process the detection result and print the languages detected and their scores. For $detection In $detection_result.detections ConsoleWrite(StringFormat("%s: (%.2f)", $detection.language_code, $detection.probability) & @CRLF) Next ; STEP 5: Closes the detector explicitly when the detector is not used ina context. $detector.close() EndFunc ;==>Main Func _OnAutoItExit() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Object Detection with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/object_detection/python/object_detector.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/object_detection/python/object_detector.ipynb ;~ Title: Object Detection with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Main() Func Main() Local $_IMAGE_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\cat_and_dog.jpg" Local $_IMAGE_URL = "https://storage.googleapis.com/mediapipe-tasks/object_detector/cat_and_dog.jpg" Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\efficientdet_lite0.tflite" Local $_MODEL_URL = "https://storage.googleapis.com/mediapipe-models/object_detector/efficientdet_lite0/int8/1/efficientdet_lite0.tflite" Local $url, $file_path Local $sample_files[] = [ _ _Mediapipe_Tuple($_IMAGE_FILE, $_IMAGE_URL), _ _Mediapipe_Tuple($_MODEL_FILE, $_MODEL_URL) _ ] For $config In $sample_files $file_path = $config[0] $url = $config[1] If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next ; Compute the scale to make drawn elements visible when the image is resized for display Local $scale = 1 / resize_and_show($cv.imread($_IMAGE_FILE), Default, False) ; STEP 2: Create an ObjectDetector object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.ObjectDetectorOptions(_Mediapipe_Params("base_options", $base_options, _ "score_threshold", 0.5)) Local $detector = $vision.ObjectDetector.create_from_options($options) ; STEP 3: Load the input image. Local $image = $mp.Image.create_from_file($_IMAGE_FILE) ; STEP 4: Detect objects in the input image. Local $detection_result = $detector.detect($image) ; STEP 5: Process the detection result. In this case, visualize it. Local $image_copy = $image.mat_view() Local $annotated_image = visualize($image_copy, $detection_result, $scale) Local $bgr_annotated_image = $cv.cvtColor($annotated_image, $CV_COLOR_RGB2BGR) resize_and_show($bgr_annotated_image, "object_detection") $cv.waitKey() ; STEP 6: Closes the detector explicitly when the detector is not used ina context. $detector.close() EndFunc ;==>Main #cs Draws bounding boxes and keypoints on the input image and return it. Args: image: The input RGB image. detection_result: The list of all "Detection" entities to be visualize. scale: Scale to keep drawing visible after resize Returns: Image with bounding boxes. #ce Func visualize($image, $detection_result, $scale = 1.0) Local $MARGIN = 10 * $scale ; pixels Local $ROW_SIZE = 10 ; pixels Local $FONT_SIZE = $scale Local $FONT_THICKNESS = $scale Local $TEXT_COLOR = _OpenCV_Scalar(255, 0, 0) ; red Local $bbox, $start_point, $end_point Local $category, $category_name, $probability, $result_text, $text_location For $detection In $detection_result.detections ; Draw bounding_box $bbox = $detection.bounding_box $start_point = _OpenCV_Point($bbox.origin_x, $bbox.origin_y) $end_point = _OpenCV_Point($bbox.origin_x + $bbox.width, $bbox.origin_y + $bbox.height) $cv.rectangle($image, $start_point, $end_point, $TEXT_COLOR, 3) ; Draw label and score $category = $detection.categories(0) $category_name = $category.category_name $probability = Round($category.score, 2) $result_text = $category_name & ' (' & $probability & ')' $text_location = _OpenCV_Point($MARGIN + $bbox.origin_x, $MARGIN + $ROW_SIZE + $bbox.origin_y) $cv.putText($image, $result_text, $text_location, $CV_FONT_HERSHEY_PLAIN, $FONT_SIZE, $TEXT_COLOR, $FONT_THICKNESS) Next Return $image EndFunc ;==>visualize Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Pose Landmarks Detection with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/object_detection/python/object_detector.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/object_detection/python/object_detector.ipynb ;~ Title: Pose Landmarks Detection with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") _OpenCV_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-opencv-com\autoit_opencv_com4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $cv = _OpenCV_get() _AssertIsObj($cv, "Failed to load opencv") Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") Global $solutions = _Mediapipe_ObjCreate("mediapipe.solutions") _AssertIsObj($solutions, "Failed to load mediapipe.solutions") Global $landmark_pb2 = _Mediapipe_ObjCreate("mediapipe.framework.formats.landmark_pb2") _AssertIsObj($landmark_pb2, "Failed to load mediapipe.framework.formats.landmark_pb2") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $vision = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.vision") _AssertIsObj($vision, "Failed to load mediapipe.tasks.autoit.vision") Main() Func Main() Local $_IMAGE_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\girl-4051811_960_720.jpg" Local $_IMAGE_URL = "https://cdn.pixabay.com/photo/2019/03/12/20/39/girl-4051811_960_720.jpg" Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\pose_landmarker_heavy.task" Local $_MODEL_URL = "https://storage.googleapis.com/mediapipe-models/pose_landmarker/pose_landmarker_heavy/float16/1/pose_landmarker_heavy.task" Local $url, $file_path Local $sample_files[] = [ _ _Mediapipe_Tuple($_IMAGE_FILE, $_IMAGE_URL), _ _Mediapipe_Tuple($_MODEL_FILE, $_MODEL_URL) _ ] For $config In $sample_files $file_path = $config[0] $url = $config[1] If Not FileExists($file_path) Then $download_utils.download($url, $file_path) EndIf Next ; STEP 2: Create an PoseLandmarker object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $vision.PoseLandmarkerOptions(_Mediapipe_Params( _ "base_options", $base_options, _ "output_segmentation_masks", True)) Local $detector = $vision.PoseLandmarker.create_from_options($options) ; STEP 3: Load the input image. Local $image = $mp.Image.create_from_file($_IMAGE_FILE) ; STEP 4: Detect pose landmarks from the input image. Local $detection_result = $detector.detect($image) ; STEP 5: Process the detection result. In this case, visualize it. Local $annotated_image = draw_landmarks_on_image($image.mat_view(), $detection_result) ; Display the image resize_and_show($cv.cvtColor($annotated_image, $CV_COLOR_RGB2BGR), "Pose Landmarks Detection with MediaPipe Tasks : Image") ; Visualize the pose segmentation mask. Local $segmentation_mask = $detection_result.segmentation_masks(0).mat_view() resize_and_show($segmentation_mask, "Pose Landmarks Detection with MediaPipe Tasks : Mask") $cv.waitKey() ; STEP 6: Closes the detector explicitly when the detector is not used ina context. $detector.close() EndFunc ;==>Main Func draw_landmarks_on_image($rgb_image, $detection_result) ; Compute the scale to make drawn elements visible when the image is resized for display Local $scale = 1 / resize_and_show($rgb_image, Default, False) Local $pose_landmarks_list = $detection_result.pose_landmarks Local $annotated_image = $rgb_image Local $pose_landmarks_proto ; Loop through the detected poses to visualize. For $pose_landmarks In $pose_landmarks_list ; Draw the pose landmarks. $pose_landmarks_proto = $landmark_pb2.NormalizedLandmarkList() For $landmark In $pose_landmarks $pose_landmarks_proto.landmark.append($landmark_pb2.NormalizedLandmark(_Mediapipe_Params("x", $landmark.x, "y", $landmark.y, "z", $landmark.z))) Next $solutions.drawing_utils.draw_landmarks( _ $annotated_image, _ $pose_landmarks_proto, _ $solutions.pose.POSE_CONNECTIONS, _ $solutions.drawing_styles.get_default_pose_landmarks_style($scale)) Next Return $annotated_image EndFunc ;==>draw_landmarks_on_image Func resize_and_show($image, $title = Default, $show = Default) If $title == Default Then $title = "" If $show == Default Then $show = True Local Const $DESIRED_HEIGHT = 480 Local Const $DESIRED_WIDTH = 480 Local $w = $image.width Local $h = $image.height If $h < $w Then $h = $h / ($w / $DESIRED_WIDTH) $w = $DESIRED_WIDTH Else $w = $w / ($h / $DESIRED_HEIGHT) $h = $DESIRED_HEIGHT EndIf Local $interpolation = ($DESIRED_WIDTH > $image.width Or $DESIRED_HEIGHT > $image.height) ? $CV_INTER_CUBIC : $CV_INTER_AREA If $show Then Local $img = $cv.resize($image, _OpenCV_Size($w, $h), _OpenCV_Params("interpolation", $interpolation)) $cv.imshow($title, $img.convertToShow()) EndIf Return $w / $image.width EndFunc ;==>resize_and_show Func _OnAutoItExit() _OpenCV_Close() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Text Classifier with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/text_classification/python/text_classifier.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/text_classification/python/text_classifier.ipynb ;~ Title: Text Classifier with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $text = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.text") _AssertIsObj($text, "Failed to load mediapipe.tasks.autoit.text") Main() Func Main() Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\bert_classifier.tflite" If Not FileExists($_MODEL_FILE) Then $download_utils.download("https://storage.googleapis.com/mediapipe-models/text_classifier/bert_classifier/float32/1/bert_classifier.tflite", $_MODEL_FILE) EndIf ; Define the input text that you want the model to classify. Local $INPUT_TEXT = "I'm looking forward to what will come next." ; STEP 2: Create a TextClassifier object. Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) Local $options = $text.TextClassifierOptions(_Mediapipe_Params("base_options", $base_options)) Local $classifier = $text.TextClassifier.create_from_options($options) ; STEP 3: Classify the input text. Local $classification_result = $classifier.classify($INPUT_TEXT) ; STEP 4: Process the classification result. In this case, print out the most likely category. Local $top_category = $classification_result.classifications(0).categories(0) ConsoleWrite('@@ Debug(' & @ScriptLineNumber & ') : ' & StringFormat('%s (%.2f)', $top_category.category_name, $top_category.score) & @CRLF) ;### Debug Console ; STEP 6: Closes the classifier explicitly when the classifier is not used ina context. $classifier.close() EndFunc ;==>Main Func _OnAutoItExit() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj Text Embedding with MediaPipe Tasks #Region ;**** Directives created by AutoIt3Wrapper_GUI **** #AutoIt3Wrapper_UseX64=y #AutoIt3Wrapper_Change2CUI=y #AutoIt3Wrapper_Au3Check_Parameters=-d -w 1 -w 2 -w 3 -w 4 -w 5 -w 6 #AutoIt3Wrapper_AU3Check_Stop_OnWarning=y #EndRegion ;**** Directives created by AutoIt3Wrapper_GUI **** ;~ Sources: ;~ https://colab.research.google.com/github/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/text_embedder/python/text_embedder.ipynb ;~ https://github.com/google-ai-edge/mediapipe-samples/blob/88792a956f9996c728b92d19ef7fac99cef8a4fe/examples/text_embedder/python/text_embedder.ipynb ;~ Title: Text Embedding with MediaPipe Tasks #include "autoit-mediapipe-com\udf\mediapipe_udf_utils.au3" #include "autoit-opencv-com\udf\opencv_udf_utils.au3" _Mediapipe_Open("opencv-4.10.0-windows\opencv\build\x64\vc16\bin\opencv_world4100.dll", "autoit-mediapipe-com\autoit_mediapipe_com-0.10.14-4100.dll") OnAutoItExitRegister("_OnAutoItExit") ; Tell mediapipe where to look its resource files _Mediapipe_SetResourceDir() ; Where to download data files Global Const $MEDIAPIPE_SAMPLES_DATA_PATH = @ScriptDir & "\examples\data" Global $download_utils = _Mediapipe_ObjCreate("mediapipe.autoit.solutions.download_utils") _AssertIsObj($download_utils, "Failed to load mediapipe.autoit.solutions.download_utils") ; STEP 1: Import the necessary modules. Global $mp = _Mediapipe_get() _AssertIsObj($mp, "Failed to load mediapipe") Global $autoit = _Mediapipe_ObjCreate("mediapipe.tasks.autoit") _AssertIsObj($autoit, "Failed to load mediapipe.tasks.autoit") Global $text = _Mediapipe_ObjCreate("mediapipe.tasks.autoit.text") _AssertIsObj($text, "Failed to load mediapipe.tasks.autoit.text") Main() Func Main() Local $_MODEL_FILE = $MEDIAPIPE_SAMPLES_DATA_PATH & "\bert_embedder.tflite" If Not FileExists($_MODEL_FILE) Then $download_utils.download("https://storage.googleapis.com/mediapipe-models/text_embedder/bert_embedder/float32/1/bert_embedder.tflite", $_MODEL_FILE) EndIf ; Create your base options with the model that was downloaded earlier Local $base_options = $autoit.BaseOptions(_Mediapipe_Params("model_asset_path", $_MODEL_FILE)) ; Set your values for using normalization and quantization Local $l2_normalize = True ;@param {type:"boolean"} Local $quantize = False ;@param {type:"boolean"} ; Create the final set of options for the Embedder Local $options = $text.TextEmbedderOptions(_Mediapipe_Params( _ "base_options", $base_options, "l2_normalize", $l2_normalize, "quantize", $quantize)) Local $embedder = $text.TextEmbedder.create_from_options($options) ; Retrieve the first and second sets of text that will be compared Local $first_text = "I'm feeling so good" ;@param {type:"string"} Local $second_text = "I'm okay I guess" ;@param {type:"string"} ; Convert both sets of text to embeddings Local $first_embedding_result = $embedder.embed($first_text) Local $second_embedding_result = $embedder.embed($second_text) ; Retrieve the cosine similarity value from both sets of text, then take the ; cosine of that value to receie a decimal similarity value. Local $similarity = $text.TextEmbedder.cosine_similarity($first_embedding_result.embeddings(0), _ $second_embedding_result.embeddings(0)) ConsoleWrite('@@ Debug(' & @ScriptLineNumber & ') : $similarity = ' & $similarity & @CRLF) ;### Debug Console EndFunc ;==>Main Func _OnAutoItExit() _Mediapipe_Close() EndFunc ;==>_OnAutoItExit Func _AssertIsObj($vVal, $sMsg) If Not IsObj($vVal) Then ConsoleWriteError($sMsg & @CRLF) Exit 0x7FFFFFFF EndIf EndFunc ;==>_AssertIsObj1 point
-
This is based on this topic. With this UDF, you can define all the HotKeySet you want on any of the keyboards. The keys registered as HotKeySet are not sent to the active window. I also created a "Event-driven" mode for lengthy procedure. There is still the immediate action mode for short procedure. Note that in Event-driven mode, you will need to create an close loop to intercept the HotKey events. Events are asynchronous. In Event-driven mode only one procedure can be running at a given time. But immediate action procedure can interrupt a Event-driven procedure. All procedures are declared as actual function (without quotes). It is important that lengthy procedure should be declared as Event-driven, otherwise the system may become unstable. Version 2024-01-04 * Added support to {LEFT} and {RIGHT} keys * Added more information about keyboards in list * Added new parameter to _MKHKS_Initialize to exclude a specific keyboard from the list. To do so, you simply provide partial part (as a string) of the device name. Version 2024-01-03 * Added support to Send command, Hotkey must be set for the first keyboard. Version 2022-12-22 * Added support to register the same Hotkey on multiple keyboards (same or different functions) * Added possibility to unregister a Hotkey for a particular keyboard * Added validation on registering the same Hotkey twice It may happen that the list would provide more keyboards than they are actually connected. To exclude one particular keyboard, you could run the following example and test the hotkeys (0, 1, 2, ...) on each keyboard to see which ones are responding. Then you can provide partial string of the device to be excluded with the _MKHKS_Initialize function. #include "MKHKS-UDF.au3" Example() Func Example() HotKeySet("{END}", _Exit) Local $iNumKB = _MKHKS_Initialize() For $i = 0 To $iNumKB - 1 _MKHKS_Register_HotKey(String($i), _Test, $i, False) ; set hotkey to keyboard number (0, 1, 2,...) Next While Sleep(50) WEnd EndFunc ;==>Example Func _Exit() Exit EndFunc ;==>_Exit Func _Test() ConsoleWrite("Test succeeded - " & @HotKeyPressed & " was Key Pressed" & @CRLF) EndFunc ;==>_Test As usual if you have any suggestion, I would be very interested to hear them. MKHKS-UDF.zip1 point
-
As promised I post the updated UDF when I had the time to finish it. Please don't hesitate to report issues, i have made a few last minute changes that should not interfere but shit usually happens when you don't expect it. I was doubting for a long while; Would I create a new topic or would I add it to the existing topic? Two reasons I have chosen to create a new topic for it: -The programming has been changed so drastically that you cannot incorporate this UDF into your existing projects that are based on the old WINHTTP UDF. -Not just the fact that this UDF is curl based, but the given examples are demonstrating on many levels how you can apply the Curl UDF (including the mime adoption for media/file posting) and something simple but not obvious: how to get the HTTP response code, also when authentication errors like 401/407 occur. Because of the file-size of the libcurl DLL's, I cannot incorporate them into the zip archive so you have to download the libcurl library yourself from the libcurl.se site. As said above, the script also has some optimized (script breaking!) changes regarding the update array that Telegram returned. I know the earlier editions of the older UDF also used the curl executable, this edition uses libcurl instead: I had to test this on hardware and configuration certified environments, some of them are running specific windows environment that do not allow patching or updating/upgrading and won't be for quite a long time. It is there where WINHTTP was really shortcoming without patching. With libcurl, at least you can guarantee your production works out-of-the-box on X86 and X64 editions of windows without letting people to go through all kinds of pain by having to install KB updates or fixes and perhaps not getting any further afterall. New This version is now communicating with the security standards libcurl supports out of the box (no more unsecured plain text https queries) Proxy connections are supported (with or without authentication), i have tested with Synology proxy server, mitm proxy software and a service provider proxy. _getChatmember() has been added _getChatAdministrators() has been added _deleteMessage() has been added/altered to work $TELEGRAM_DEBUG allows enabling two levels of verbosity and logging to an output file to allow you to get debug data _UserPoll() routine support added -> You can build GUI components to process. Don't expect to build 60fps games, but at least you can interact with the GUI decently. (See adapted test.au3 how this works). Changed The _MsgDecode() function now returns a 2D array, rather than a 1D array (script breaking!) -> you need to process $msgData[$Record][$Field] instead of $msgData[$Field] $msgData[$Record][$MESSAGE_ID] is prefixed with a two or three character type indicator: p_, g_, c_, ep_, eg_, ec_ (private, group, channel) (see relaybot.au3 how filtering works) Fixes Binarycall has been altered: OnAutoit3ExitRegister has been removed. (Caused crash if you added your own onAutoitExitRegister callback function) __BinaryCall_DoRelease() is called more often to prevent memory hogging and is added to _Telegram_Close() function The full JSON array is now processed and resulting in this former mentioned 2D array. It saves multiple http queries for the same JSON array buffer if it is large. -> When bot is offline and multiple users were firing all kinds of commands and texts into the chat, group or channel during the bot's absence, Telegram is shoving down the whole history into the bot's throat for processing as soon as it gets online again. The larger the buffered data is, the longer it took to process and redownload before the buffer got released on the telegram server. In some cases I experienced a never-ending loop with the original UDF. I have added the LGPL license text, however: i did *not* have had any answer from Luca regarding the proposed change so it is not effective currently even though I changed a lot of code. telegram-udf-curl-autoit-master.zip1 point
-
Thank you very much!! I really appreciate your time and effort. "Everyone said" that this was imposible, because Windows USB keyboard Management is transparent and you can not identify what keypress belong to a specific hardware. I have been trying to achieve this for almost a year now, since I 3DPrinted and built a handwired Dactyl manuform 4x6. I am not sure if you realize what you have done here: To achieve this I need to craft a new keyboard (buy switches, keycaps, diodes, weld everything) configure QMK firmware to assign differents functions to each keys and use a dedicated Arduino Pro-Micro for this secondary macro keyboard. Once I did everything, I got two problems: - You can not create new virtual key codes. You are sticked to remap existings ones, the only availables are from F13 to F24 - Since the firmware is inside your macro keyboard, it knows nothing about Windows OS. I don't want to change keyboard/mouse layers manually everytime I change from Mozilla Firefox to Blender, to FreeCommander and so on. I want AutoIt detects the active window and remaps everything on the fly. This UDF allows to connect any cheap keyboard and use it as a control panel, it is not just a keyboard anymore (although you can), It is a custom macro keyboard, you can program any key to do whatever you want. The best part is that your main keyboard is not affected. I mean, if you map F5 for an Autoit function, you can not press F5 anymore to update mozilla webpage. You need to pause your AutoIt script to use F5 native function. Now you have two different F5 keys, Problem solved!! It is exactly the same if you have a programmable mouse buttons and the mouse software doesn't fit your needs. I map Mouse Buttons to fixed functions keys (F1..F12) and then AutoIt remaps on the fly based on the active window, but it also remap my main keyboard, something I didn't like. ;File Generated with OdsToArray.au3 from 'Mapeado.ods' file #Region ; $aTable Global Const $WIN = 0 , $HOT = 1 , $SEN = 2 , $FUN = 3 , $HEL = 4 ; COLS constants ;Wintitle , HotKeySet , ControlSend , Function , Help Global $aTable[][] = [ _ ["Mozilla" , "{f1}" , "^+{TAB}" , "" , "prior tab" ], _ ["Mozilla" , "{f2}" , "^{TAB}" , "" , "next tab" ], _ ["Mozilla" , "{f3}" , "^w" , "" , "close tab" ], _ ["Mozilla" , "{f4}" , "^c" , "" , "copy text" ], _ ["Mozilla" , "{f5}" , "^x" , "" , "cut text" ], _ ["Mozilla" , "{f6}" , "^v" , "" , "paste text" ], _ ["Mozilla" , "+{f4}" , "" , "copyWebLink" , "copy Web link" ], _ ["Mozilla" , "!{f4}" , "" , "addWebLink" , "Add new Web link" ], _ ["Mozilla" , "{f7}" , "" , "TranslateWord" , "translate from English" ], _ ["Mozilla" , "{f10}" , "" , "GoogleText" , "" ], _ ["Blender" , "{f1}" , "+s" , "" , "Cursor a selección" ], _ ["Blender" , "{f2}" , "{NUMPADDIV}" , "" , "vista Local/Global" ], _ ["Blender" , "{f3}" , "h" , "" , "Ocultar" ], _ ["Blender" , "{f4}" , "{NUMPAD1}" , "" , "vista frontal" ], _ ["Blender" , "^{f4}" , "^{NUMPAD1}" , "" , "vista trasera" ], _ ["Blender" , "{f5}" , "{NUMPAD3}" , "" , "vista derecha" ], _ ["Blender" , "^{f5}" , "{NUMPAD3}" , "" , "vista izquierda" ], _ ["Blender" , "{f6}" , "{NUMPAD7}" , "" , "vista superior" ], _ ["Blender" , "^{f6}" , "^{NUMPAD7}" , "" , "vista inferior" ], _ ["Blender" , "{f10}" , "{NUMPADDOT}" , "" , "Focalizar selección" ], _ ["Blender" , "{left}" , "1" , "" , "Vertices" ], _ ["Blender" , "{Down}" , "2" , "" , "Aristas" ], _ ["Blender" , "{Right}" , "3" , "" , "Caras" ], _ This UDF is a really good gift, Thank you and Merry Christmas!!1 point
-
1 point
-
Splitting a 8-digit hex value into 2 @ 4-digits
SOLVE-SMART reacted to Nine for a topic
Another way : #include <Array.au3> Local $iValFull = 0x12345678 Local $sValue = Hex($iValFull, 8) Local $aValue = StringRegExp($sValue, "(.{4})(.{4})", 1) _ArrayDisplay($aValue)1 point