Jump to content

Leaderboard

Popular Content

Showing content with the highest reputation on 09/27/2012 in all areas

  1. You need to make it a function that you call every ten seconds, not a constant loop. Otherwise, you'll never get to the part of the script that checks the buttons. Look at Adlibregister for how to do that. And a note, don't use Sleep to pause this type of script for more than a second or your script will be unresponsive, because it halts the script for as long as the sleep time is.
    1 point
  2. Raffav, Something like this should do the trick: #include <GUIConstantsEx.au3> ; Decalre an array to hold the ControlIDs Global $aRadio[5] ; Read the ini to get the set button $iRadioIndex = IniRead("Radio.ini", "Radio", "Set", -1) $hGUI = GUICreate("Test", 500, 500) GUIStartGroup() ; Create the radios and set the one saved in the ini For $i = 0 To 4 $aRadio[$i] = GUICtrlCreateRadio(" Radio " & $i + 1, 10, 10 + (20 * $i), 200, 20) If $i = $iRadioIndex Then GUICtrlSetState(-1, $GUI_CHECKED) EndIf Next GUIStartGroup() $cButton = GUICtrlCreateButton("Save Radio", 10, 150, 80, 30) GUISetState() While 1 Switch GUIGetMsg() Case $GUI_EVENT_CLOSE Exit Case $cButton ; Check through the radios to find the one checked For $i = 0 To 4 If GUICtrlRead($aRadio[$i]) = 1 Then ; Save that value in the ini IniWrite("Radio.ini", "Radio", "Set", $i) ExitLoop EndIf Next EndSwitch WEnd All clear? M23
    1 point
  3. water

    USB Controller UDF

    Welcomde to AutoIt and the forum! What do you want to do with the data read from the controller on the PC?
    1 point
  4. @JScript You might include RunBinary also in the created UDF (). With this you can set lToSave to false and lExecute to true to run the embedded file from memory. Probably a function like EmbeddedFileSetExecutionParameters(InjectionModule, CommandLineParameters,StartUpParameters etc) is also needed for passing the parameters to this 'internal' function. Hereunder you can find the translation for dutch. Please set "English" as default if the @oslang is not known and create an option to change the language while running the tool. Thnx "Dutch" $a_language[1] = "Opties voor het output bestand." $a_language[2] = "Genereer een functie op basis van de naam van het output bestand." $a_language[3] = "Voeg voorbeelden voor een User Defined Functions (UDF) toe." $a_language[4] = "Genereer alleen een bestand met de binaire data." $a_language[5] = "LZNT compressie native Windows toevoegen." $a_language[6] = "Compressie niveau" $a_language[7] = "&Open bestand" $a_language[8] = "Voeg bestand toe" $a_language[9] = "Test" $a_language[10] = "Standaard" $a_language[11] = "Voortgang van de conversie:" $a_language[12] = "Sluiten" $a_language[13] = "Geconverteerde regels" $a_language[14] = "Kies een bestand" $a_language[15] = "Bestand" $a_language[16] = "Nee!" $a_language[17] = 'Test alleen met de optie: "Genereer een functie op basis van de naam van het output bestand" geactiveerd!' $a_language[18] = "'Een moment, genereer het bestand. AU3 indeling->" $a_language[19] = "Sla het bestand op na generatie" $a_language[20] = "Comprimeer het bestand ..." $a_language[21] = "- Voltooid!" $a_language[22] = 'Bestand" ' $a_language[23] = '"AU3 indeling is gegenereerd voor."'
    1 point
  5. Here a short demo of a speedometer using built-in needle drawn with, guess what, yes GDI+. Source code here: http://pastebin.com/9CXZAEwi (code with 32 bit image is too large for the code box) With 4 bit image: ;coded by UEZ 2012 build 2012-09-26 #include <GUIConstantsEx.au3> #include <Memory.au3> #include <GDIPlus.au3> Opt("GUIOnEventMode", 1) _GDIPlus_Startup() Global Const $hBitmap_bg = _GDIPlus_BitmapCreateFromMemory(_Speedometer()) Global Const $iW = _GDIPlus_ImageGetWidth($hBitmap_bg), $iH = _GDIPlus_ImageGetHeight($hBitmap_bg) Global Const $hGUI = GUICreate("GDI+ Speedometer by UEZ 2012", $iW / 2, $iH / 2) GUISetBkColor(0xABCDEF, $hGUI) GUISetState() Global Const $hGraphic = _GDIPlus_GraphicsCreateFromHWND($hGUI) Global Const $hBitmap = _GDIPlus_BitmapCreateFromGraphics($iW, $iH, $hGraphic) Global Const $hCtxt = _GDIPlus_ImageGetGraphicsContext($hBitmap) _GDIPlus_GraphicsSetSmoothingMode($hCtxt, 2) _GDIPlus_GraphicsSetTextRenderingHint($hCtxt, 4) Global Const $iRadius = 300 Global Const $iNeedle_size = 16 Global Const $fCenter_x = $iW / 2, $fCenter_y = $iH / 2 Global Const $hPen_needle = _GDIPlus_PenCreate(0xFFFF0000, $iNeedle_size) Global Const $hCap = _GDIPlus_ArrowCapCreate(1, 1) _GDIPlus_PenSetCustomEndCap($hPen_needle, $hCap) Global Const $hBrush = _GDIPlus_BrushCreateSolid(0xFF000000) Global Const $fRad2Deg = ACos(-1) / 180 GUISetOnEvent($GUI_EVENT_CLOSE, "_Exit") Global Const $fDegMin = -223.5, $fDegMax = 44 Global $fDeg = $fDegMin, $fAcc = 0.75, $fKMH, $fMPH Do _GDIPlus_GraphicsDrawImageRect($hCtxt, $hBitmap_bg, 0, 0, $iW, $iH) _GDIPlus_GraphicsDrawLine($hCtxt, $fCenter_x, $fCenter_y, $fCenter_x + Cos($fDeg * $fRad2Deg) * $iRadius, $fCenter_y + Sin($fDeg * $fRad2Deg) * $iRadius, $hPen_needle) _GDIPlus_GraphicsFillEllipse($hCtxt, $fCenter_x - $iNeedle_size, $fCenter_y - $iNeedle_size, $iNeedle_size * 2, $iNeedle_size * 2, $hBrush) _GDIPlus_GraphicsDrawString($hCtxt, StringFormat("%.3i MPH", $fMPH), 240, 520, "Times New Roman", 24) _GDIPlus_GraphicsDrawImageRect($hGraphic, $hBitmap, 0, 0, $iW / 2, $iH / 2) If $fDeg < $fDegMax Then $fDeg += $fAcc $fKMH = (249.5 + $fDeg) / 1.33333 $fMPH = Int($fKMH * 0.621371) $fAcc *= 1.005^2 EndIf Until Not Sleep(20) Func _Exit() _GDIPlus_BrushDispose($hBrush) _GDIPlus_ArrowCapDispose($hCap) _GDIPlus_PenDispose($hPen_needle) _GDIPlus_BitmapDispose($hBitmap) _GDIPlus_GraphicsDispose($hCtxt) _GDIPlus_GraphicsDispose($hGraphic) _GDIPlus_BitmapDispose($hBitmap_bg) _GDIPlus_Shutdown() GUIDelete() Exit EndFunc ;Code below was generated by: File to Base64 String Code Generator v1.10 Build 2012-09-08 Func _Speedometer($bSaveBinary = False) Local $Speedometer $Speedometer &= 'iVBORw0KGgoAAAANSUhEUgAAAmgAAAJoCAYAAADS7x1JAAAACXBIWXMAAAsTAAALEwEAmpwYAAFZ7ElEQVR4XuydCZQdVbWG9+3bQxISIgEEVMCAEJAgIDiAiIIyKeAQFWXhUpFBREXBISCQIPOMRlAEmQTFCREVFZAxCKiAiAgoEERAIRjI0CTp4Z5X31nrX2u/erdfGlJ90+nef9ZJDV1169y6VXX+2sO/azfddJMNJQKBQKC/vz/Nnz/fFixYkNvChQtzW7x4sbF+yZIlzLMuz/f19eXlF154wXp7e23p0qVM+Rxanm80GnkebLjhhmzLZ+dpW1tbbh0dHbQ839XVlec7OzvzdMyYMWq26qqr5vXjxo2zCRMm2Pjx42nM87fcJk6caPV6vWYtQCAQCLTbS0MgEAhAhtKzzz5rc+fONaa0//73v/bcc8/ZvHnzchMx23zzzTMxWm211WyDDTbI82uuuaa9/vWvz4RsypQpkKBMzACkChLGdNNNNxXZMpBS0t+sVqsZ0HpQXscyffjnP/9Jn/VZHBfylz/roYceYtu87sEHH+Q75c9/6qmn7Mknn2Q96xL7rbHGGrmvq6++ev4OkyZN0jx/g+gtF5ELBAKBgSxogUAgAHlJ//73vzNJ+c9//kPLZOXpp5+GSGVCst5669m6665ra6+9Ng2yQstEbK211mKdiBIN0sOiCBZT1mOdYpqtYu3t7X4b1jFtRrwGImZar+0GInJ+O/VjwM+EpLHM9+c8QEAfe+wxSGkmf5yrOXPmZHL3spe9LJO1ddZZh5bPwyte8Qoa1rz/l8AFAoFAELRAIAABS48//rg98cQTpikkAysR7kMIxlZbbQURg3Rli9bYsWMhLCJZkCqmsn7JtSniJXLmiY8jWcKgyZWmwG/TlMCpX9rO7++3Zar++/U9PT24QD1RxM2KFa7psdgGAvv3v//duru77a9//Svzmbw9+uij2dL48pe/3NZff33OLSSXBnkbbcQtEAgEQQsEAs8880yCIEAUsPxgGSPmC5cjRGyLLbawzTbbjGWImKxXkA8RMUhZJmMC68tERtByFeDY/lgse8JFPwGEUMRQ27YCImy+X2WS6QFJe+SRR+wvf/mL/e1vf4PAscz5gqjl32Dy5Mn26le/GjI3AohbIBAIghYIBHC5JQb9hx9+mIYlB4tNjgV77Wtfm6cbb7wxAfAiPyI6cvVBKvS3psSD9ZAwtqUBuSk9mWJ+eSDCpfkrrrjCZs2aBSnS50MccR2qPyzn6a233poTAYYQzYigzoHOoaYikWXi6d3Kdv/999u9995Lg7RB3vidINHE6kHeIG7DmLQFAoFIEggEAsQ+JQLbaQzoZENusskmtt1229m+++5rW2+9NVYYERcf4yUiMWDclciZh6xlECJZyDxJEWmqCp6cMU+s15133slxyn0WcRRpEzlrCUGDMHJc9VnLsuZp6glnmQBzTrFk4lJmWSD+789//rPddddd9utf/xoSlzj3G220Eb81xG1FukgDgUBY0AKBkKzAJUZcE1OC0xmgyYbccccdbcsttyR4vxwD5glTyT04IETMRC5YVqC8Ys70+bhKcfGxXvvI9QeJW24CpGOBU045xaZPn65lfzz6IMsa+0Ak6VNLLWha9m5ZWfQUr6fz6ImafifWe9dp+Vx7NylWtttuuw3CCmnDSoqbmoaldKikQQKBQBC0QCCkLIhTojEAkzGIRWz77beHkDGvQbxMEkQUmlmayi5Llv322tYTDU0VbyUCqGmzwPrKY7zA6aefbl/60pcMYHHCLQhEYHyyAn1rFTiuzsWVV15JJifyG7iT+X18MoIndZouUy6k7A4VofNEmmvklltusdmzZ9sdd9xBokc+vtoqq6zyUghbIBAIghYIhLTFPffcg2WEwTYTk5133tm22WYb23bbbYk/0iDt3ZVynckqo3VaD7nxMhYl0tMc2t8THeZ5bvzhD38gIzEnGnz84x+3d73rXRCy' $Speedometer &= 'snuz0kB9ZY2effbZdvjhh+tYntCIIGkZy56Whww6pu8ngf5YuPT9sXS+8pWv9KSsmSWTdf5c0/T5Tcm1P8deskT9QBKE3+tPf/qT3XjjjXmbqVOnYmmlDSD5EQgEgqAFAgHclYn4IogZA+wee+yRrWOve93r0BSTNapZEH9ZtoJWlonw8z6A3ROaAa1uXnpCBO/kk0+2Y489lsE+tyOPPJJliN+A/VkOQLIgEuq/LGgcT9+FadPMUrkShxhy/0J4IdkE9WuZv6kSgvpWJrGaDigZon19vFr5+8mF6kl4WVYECyzkHwvb9ddfjxwIMW+4yCFuw4SsBQKBNms1AoEAVo30q1/9Kp1wwglpn332SVg2dthhB4K/cyzR0UcfzXIWewWQs5SSBuGy1WggPbCmMVH6DFnQNF+G/2y5NRXP9apXvUoxVcoY5RgDBuwvJwj0h3R4V16z7+V1yRS31RJypu+p4yNjImsW5w39OKaeFAP/ncruZu3vvw/7a1uB9bomgPrh96XpXCCey7V1zDHHkOGa3aHvfe97c6booYcemgqina9NrlEb6QgEwoIWCATuu+++hFsQKxmEY5dddrE999zT3vzmN5dFT5nICoKFA4LmY7004PqsTE+OmmlyVapFdsMNN9g73vEOEQqyRQlU9y5XHxdXeSC+LGjLgMhQS0iaz4aFcPP7ioi9/e1vx1pVztyszgXc3M2p48h1jhVS18ZAiQ1o5dlVV11lP//5z8kczckGb3zjG4lfq9lKjkAgLGiBQACykgrrRDrttNPSQQcdlG6//XabNm2a3XzzzfbHP/7RCusZcWUMohowNbjS5NpDsd+77hhoFWcmEsd+3lrkicCQECTU7/06yh7JmgMBAN5tOkogwko1Bu9GJvbMWyrLrukqrjV/jSi5xM455xwyfHO83rXXXosFVL+R+qDrRC3LsRx44IFWWNGwsOX4wgceeABCnK/lYl3i2raVBIFAELRAIID+WPrNb36Tvva1r6UjjjgiD5YzZ87M+mSXX3657bXXXsQmybXlxWB9ULhkLLC0eU0t6WSpKkDOFLz66qs9CSrrmlUaY6VBnbJEPhCfRAEf2M42XqR1pMO7cpni4vQJDCR2lEtOabkCyFLpEyko2I7VLheBP+uss7Ibc8KECfbOd77TCqIFiWQf9V3Nu17zy8Hb3vY2iB6ud/bjd8/uUdzzXOtc8zbcEAgEQQsEAgsWLMgDVaHLlWbMmJF1qC6++OI8oH31q19FBkPkRcRLA7cPwFcgeTmwn33JBiQTj0HRdtttNzIEcymmvffe284999xywgBw2XyVA6mGLCEBFGeFeGzZejdaIPIsQH5cmSx+L1+QvXKSpgQFPltkDUvrddddx7wXF85WsaOOOorrNF9DRQwkZF/XD9voeqL54vZZFPfLX/4yn0E1h0zUzzzzTK7zHLfGvWArEoFAELRAILTJioD+VATzJwYoBrtf/OIXWeV9//33JyicwY34sTz12XUiYArsFliWq5P2r3/9yz784Q+TyYnbiZgmkgewiuQBVeTo7rvvltWsaYA+0yrgP5/PhHRonikErXwsbT/CoQxbuaixoPnfgKQKr9Pmz2llv43iECWKS7wj15+uKabewkpfIP4QLbZjvbYT6fTuT1nqRN4g6AcffDDxiFz7mbxdcMEFhvWYe4N7xFqAQCAIWiAQwIqVjjvuOFq2HvzkJz8hIJyYHbLjfOacYsu8e9BbumheD6ucmci+BGtTLYB13qJGE6FjkMWN5QnBkBAj9VuD92te8xodQ4SS5bKrczQQtLI2GRY0n+yBi5P1/tqokqQ1PedkBANZ8SRV4q815iGPvGDIJa1rTKRTLxKKeZSsB00W3/Hjx9t+++1nP/vZz3C7c21kdygZodwzVjECgajFGQgEqH+Yfve739ncuXOJ48FKQKFqL1/g1dy9/hTNkyahnMXXVPQU9xMDJ4XOBe9uElEDZFBS1qecGahp1aB/DMIe//jH' $Speedometer &= 'P5g0O+6oIWiyYnGteAI+efJk8/DVGaqArj+RLIkJM++FhtVHHwP5vve9z2vG5b8r61PCw0DbA/+CUJY3IcYSKzKNl4eLLrqIJIVUvNAg70GN0Zd2YQQCYUELBAJPPPFEKuLIUhFvk4p5aj8Sd0MmWyZNoIkAqpZ9VqUXh/UxZ01dkTRpnrH/m970prJYaflz2ZcyUHm9g3e5VR4QLwLpiZi00EQ6fD9HOpRNy3T+/Pm2aNEinRsC83OwvX5//9tr3fLCX3dKICFrWOtkRfPWVy0jiKx5T96wtqlvXmBXRE3Xo44h+ONgVeaeoYoB9xD9+spXvpIuvfTSVGT+JlsWAoGwoAUCgVSAoGpclsR8IS/A238za5Tcl2Urhp8voyyzIPisR1kwZAVB3f2yyy4bsE6jBszf//73OqbXQCvVyVw+qG+CrIhApIBjerX70QIRFqYIvirmUBmv2qZ8vVQJlfMCv/3tb5tWEfC/pay96Nmpf5r6Pvp15TqtWl92q2u9BxbXE088kVlkZkguwBWcIIhkltbcTREIBMKCFggwoKZZs2YR8J8LWxcZmcTSICLbNGZI1gSBrLcqB1kfN/TWt751IDLpB0ZqdiLxIRKlv4mkVZokIKy99tr00VsdfRxTnh9NkOUIcVdfE5WEkaGGyBnB/gCtvVJmr68moGxiLLTEj7UsPo8p7Q1veIP94Ac/QGst33NI0nz7299O3Is2uhEIBEELBMg0Q3yTbLcvfvGL2XJ22GGHEUPDINJMz4tlHyivYOrKiJm3VAAyOBl4ta6k/O7Fa6nnKXLmCWXlWZx8nixo3nKiWDkPna8RDu8KlL6YfoeWEDQdT5ZTnyDgr6myFW333XdvCZH2MXdKLgBkgn7hC1/AHQtJy1nQZEZzb9qoQSAQBC0QINMw8aZeDAYJCxASAeeffz6lbERuyhmWzHs9KE2rrPWo4/CZOp6sIgT/NzuGr9kIScRtxD76rKEebIlBEzlVEW6v4zZayFnZtecFYGmtIGiylnL9kPUrK55I4kDuTtybLTs/NJ+hLP08Gn3kOkfTD/cs1Q+4R7lXcYPaiEQgEDFogQBv6IkHPyWKDjjgAGojestBOWbKK/xLvFMll2QBYBsGxMpimET2NNW6nXbaye69996mchcC/cMSiNyHV4QXyROqrPdI/yZNmkSZJ/UHLbRMSHzQ+WiBzs0jjzziSRGxVy05tqxiZBwrHk6ZmU2K3/PbEePYUhKreqAij/7a1DXL34n/pHFNF+EHXGNp1113pW5tzVZ+BAJhQQtELcyi4HM65JBDEll1BNt/73vfy4QHSNBTVijmNVCgGeVdRCJnDDBA2W4iaxXAW+i8BQ/rXlMiQHNANZ7SUL4kU+UEScTDy0f4/uPm9Jaa0QbOgSxoAjpjQw0fV3bNNdcwr0L6TbOF+R233XZbLKAiS0MK3Vsq1k7JM5IEsLpKW03wLxdU4bjwwgvRVqNiR64HWsSHroy1QAOBIGiBwNNPP52+853vJOLKGBxx/VEPUwWrNVD5GoblrEyIjnc5gu7ubr39s4//jMqIj3enapk4NAZS+t4E6gNZlDTtC2RBqcxCU9Z9mzJliicIJFx4d99os54pWcIXiucabFkfKJCujF6Vn/KJG56svec972lZSS5/j8yePTuTyCOPPNLWXHNNBG7932W1lkAu9yWJDJQ5yy8hU6dORarDuMe5121YIxAIghYIUJA8nXzyyZReQnwT9whB/zz8RcyakSJZHiAy3sUoixnZZbiCKGHTVKmf/aqCP76I4KabbsogVSY8/vtoHwa/0ncQKido3jqk/uLi1HajSWrDuxgV/6XrqiUETQXSueaxFvssUuYF1gkUQVdppxZAxAti5WVIDDDlXvMWZO0jK7ZqwCKAy/d8//vfb9/85jft1FNPTdz7NqwQCEQMWiCAhQy3B7UhKdqM60aEzMeTNQ3oFmRB8zIVd9xxh+28885IF/BZ2XV1/PHHs50GDe1XqYSF' $Speedometer &= '5n3/iJnD6iBrRNl1pYYgKO4jtvGaZMsLfZb6JAKGVdKrzD/22GP8bZkZpCm3ZEKf1azOOe1P1mirWaO9bqDO/n39Zm3tlvdpM2vUzFLR+PZs1VbM9VgaFkkCjz76qKxVkiLhvLTs+EjElDXy/LKI28Ybb4x7umUiwrqv5s2bZ0XYgSeNEC76gXV6wHvAV2oA7D9t2jSu9SyQPH36dMIXUlHpAwmPmq0wBAJhQQsE0HrKSv+UGLrkkkvs+9//vm2//faetMiyMBiCJNKl/ShJQ+yZyAiDS66NKfeLz1YcahCL412fzHuoL3feeafIGeuq0iPzgqQ+jomkC47nLWjMLzMOrZabE+u1ZHVry3Ntxb4st7NN4rviosvbF38za5dLld8MF+7wqCRAooZ3MdNHqk4wbRVBIwPSk2haszJkSpLRdi1zcaJ9xnmS+xIR3+22225QBE/fx9+vfK5q4nJvUg/2qKOOSjwbrKUIBIKgBQIMQlm/jBgbYlLOO+88NLm8JUtkJg8EbDcYC5GCqmmKQ/vYxz7mBzr77ne/q7gupi0jaAjWinSpf8yXB+l77rlH66t0Meq4vig3jQxFlStS/NWg1fKhFFi/aD2swCxG7BS6bpCeBsetWW+9jY0LNMwaySzl/Qy2lupY22xFA6JAnCDWHBF9GhUpWnF9cJ4pMUXdWO8i1LRcWsr22GMP/b2VJJaMTJWSopGpOSgLYzlMQftIYoYpZaW+/vWv29VXX805IMYtXXvttcmGFIFAELRAANXxRB0/HsTolx133HE2btw4PcAhYnp4Eywtd86gXJC+zBLzytL86Ec/qpgukUMyz2Slyvu0AmRy+gGKPgmeKD733HPeilUZSRMhK1tnsKB5K92cOXO8/pbml4lOb00rZjtweTayBS0v99dwbeZj8sEQNZE1zsBwKZYOQeO869oQgW1JDNz111/vSRj9UF98wXRcichVqF9s06qKHfbQQw9BqNQf7i/1Y7AxkGVRZ+57XefMI36LFQ3haVzMhD0knh1WPQKBIGiBIGaHHnpoWm211VBIJ/Af65aImYKLPRGDuOmhPWgrgd7sfUmcLbbYwjbbbDNvKSMomYmIXEtIGtUNNthgA45ZzvL0LlfFIYkcadvKKwmIBEycOJFzrVg81mHJycte5iMNEIgmotXOmNvTZ9bbl4lZe9Gsr5Hjz9oSmzasUcwkmkHc8n7W1l+0RtuwSRR46qmnmPoYvZbFoGE5YuozgiFjfhuwzTbbYG3SupZZz6644goDcnHi2oTA0s/BZjn7Iu9aVuyoXiAkfQMRPPjgg62wouXfgXCIiohaIBAELRClmIoyMInMLZWCgRBo4NdDmkFID3C54WRBUBvMAMDnKPNOFjVQuFN9YLxdfPHFWOjy3+ViaQWoX6jvqamgvqoQtRIYqoIIn76zYohUDFyWDAZfAuXLJbIS/8rkzCU34L7s7TJbOqZmmYjVkjU6rVhXw3pGskAmbm38nnXLiQSgli1tyVYw5NZEpJbvrfNPID7TVr3ImOD1/Lw7kHVUD2Ce1kKQvcm9JWJI+MBgi8Yr/MBvT/+bujwlzqxrkBeI4gXPbrrpJoga86l4iUn2ohAIBEELBFBCR8MsFcguxRkzZuRgfS/ACiQhUNI1Y9671/j7oIOs5QbyCvwf+tCHssVBpO/ZZ5/Ng6F39w0xID8+AWKgwZX+IUGgc1FZ/7x7k6mXGEGXyg+8qiwgS4fgKZrIWY1G/7oXWVud/Yvl3qVWW/xCsUCcX8Pq1mv2/EKrdS8mMI1PgaAVDVo3PKBz84EPfIDkEsg+67C+tsSCRuwfSSzlGEy/LEmNXXbZpXRvDD1uueUW9Al1D0OaOFci6C9KxkTnW/e5PhMyqlg11pWTePgbRI2XPX6fww8/PBWhEss4eCAQBC0QQGAzFe7LhBUGV+Ypp5wCMdIDuhxX0zT4Weu8u2Mw8IRDD38/qO277746Lo2s0RIJGVrQhy233JK++T43zbK8' $Speedometer &= '++67cftWqujvXUpyU+ncUF4KawiuX2op7rjjjorR07lc5uCbHp9r9ecXWefiot//ed7syf9a7dkF1j6/22pPz7c0b5E1Fi3OblDQz0cit8G8DQ9wzj/5yU9mC+bChQvz8oYbbpjJ9VBD2cU0L1AsYWWtxxpNPCO/G61VJA0tQd2XHG/PPfckVkzu+UHdnyqt5r8PU18iSr8D62heXkSuUF72jjnmGOJY+czs+rztttuSDTMEAjXMvisQgQB1JtOPfvQjpCRQCEfPTDX7RII0zcRALkXvthlqUIBasWhAml8oobfCxSliSCwalgJZ+jwh9VIKWPjQcNP5WdFo9PVbaq9bfeEC6+uaYP2dNevsMas1+s3OOM0aM4+wFz4/w8acNNPaz/q69U4/3PqPmG7tx8+0tlPPs9qRnzFbb6LVHnrSFtTH2rlnnmXHfmmGNcb0WX/vUms0/nex+bII6kiAJ18lkJWJTh7bcD1yn2jqrw20w5Ck8NpkVVt65V4UeUI4l2xWkXr6z0sEFTIG0Yfqa8jq3mGqIv+nnXaaFSQNazlxpzUbxQiEBS0QgOBk5X/qN/7whz+kNh9ZVwpuzlMpjHsyIjeHLy4+1EDNn9gdZaDRh9NPP10p/i0bnEUSdUxZJGRVUKzO/fffr/NjwwFtZGTS53qbtRPnl61gDesZU7f+iWMsddRtvPVae99ia6Sl1lEz60SgtrcgGL0vWK1/FavV1jBLY21sX5uNafRbsm7raRTXRpdIi3mXl49VspUckPKmllrW8TesQSKoECHgyRlT2m677eYJS6Xnx4s2+89Gn5A+6ji81EDOIHP0t4Voqv22+uqr20knnWS//OUvqSWL5T4V2bjJRhkCQdACAYoep3POOSdRABldsW984xvKdvMPd2VmQdaULckAIPeZl5JoSZYckgCQRS0juglacHy5d8jAE3FtGhsmFy1xNiJywwF9nXXrgSyM7czy//Weop+paNbI1QPqS2vWl3qL7QoigUWShADrtHrHOLMuNM/6rdHRVnwGRLRhjXGd1tvZYZbGmC0db4LOTdnFupKDrGW598qxWIgT16h2ob+zDrDshWppKO0D5qt0gevzRAz9y4O0A3U9HnTQQb7EVEuyoH0s2re+9S1erpCkYb1kOnC5oqOWkxmoTMIzimeVjQYEgqAFAoUrM6FRdMABB9hPf/pT3Jl6cMrtwDJv3OUBRANQ/tull14KCZE1qyVZeh/5yEeyq0aD/ty5cyFpLdO5AsR3MS+ZEQnmSmZD66gooEGT5RWNOqSpr2FtsDM4IwkAmMlY6G1YY0zD2gvS1d/Wbv1obNT6zfp6rXdJrxX/mTGQjp1gbe0FQW/Uciza2LaG1Yq/1fqzdUbXji8UboD5lRwi2mUiChmi9mdaa621dB16EidyprqpSnbRNSzyUiUJEjGkoX1G+TGf2IM4ra5J9aVl54/74nOf+5wdffTRyHyglaYQBZFL7vHsBv785z9vxx57LNb9ZCMUgSBogQAPwnTIIYekTTbZxO666y7iozyp8O451eXTAKKsymy9uvzyy9FO4i0cMUoRt1a4Rnjjx4rmXURYB/hbyywA1BllXu4rETBKClE8+uyzz6aGaJa68JaUFQ2yM9sT56luqeFkMrr7zJbUrG1xw2xR3doWJatjgOGcdnRZe62YjlvFGgUJq00YW/xtsdXqNVvSV7RGv3V0tlutK5ngA8OZl6VmZYeIliyDuv4gF2RDIk7Mb16EDODGzFmSPnYTfPCDH9S1C2ml6aWokv75GDnNX3TRRSJHqgGKLIvi1Frmhtd3JItT5BXR3J122okqJMTBKtGAc8r2JFNALrE65kSCIl472QhBIAhaIMAbdCreVlPhTiBL0z772c/qDdurnDP1tTBp/g0fgkf8FdmCpOtDUFiHJAf7toQg0QpdNsV7qV98x5bIbIB1110XcgrBxQpAMkCW/aAe6Y9//GMGoDywaBBSW9HotYb1tVHNCf3ZZDXI' $Speedometer &= 'I27M3mLlOq+wvtRlNm6MtY1PZh1162Fj67PUvsiMa6F9knWuv0Gxaokt7WxYR3uxbU/N6kVLPVbWfROxH4lJAr7SBfeB7iOIBkSCDGisu8RUYQUi3ivvs8MOO/iXDRr7VX2P+BAFNAO1jv5SfskTzFYK5VKkHQkan6lNo/oDGdKcJ5IXytpqyJIQ44dLFIta4plmKysCkcUZCBQxMenCCy9kascffzzkSm//Td+4y3Esig3hDZwA3scff1zETcK0+e9TpkyxBx980IYanjTy1o2uk6wPDIJnnHGGtQJe2oMm3Tcv9YAFoOzyW9FICxdab1tBqjo7rNZjllZpWA3yWOu0rscfMXv1ura0mF/SYzaxp/hu4/uslroMD+c4SF3HfGvHPZrGW1/3Arvh+tvtyhuvtPY+3jJ7rbfRJauiyn6prBHSHyMhDk1E28vHiKQhHaH7Dve3/zvzEDaC4WVR9DVVpbpfyXUJFPxP6aldd93VS3zk+3jSpEmlLNKhB+cIEvbAAw+I3PpMaM4J/Vb5Ka4ZkVj1Uy5bBLPz8n777cd5r9nKhEAQtECUZrr11luxNpG27gkOzbuhvAq71zUi5R3XDfE1Td/Q2U6F0HFP8PY7hPB9xCrAw1mDEjEr9LNV2XwMwF4+Q/PqjyyS5dqdK1pnw3pq7Vm7rH0Jsf0N63u+25asOsHGti21+uIuq48tiFZ6wToWjrWlXZ3W3lnskwry0ddlC3vqJHDaqhRQ71hqtd6uYtqwpYuTNcbWrKNX6vHJXy82guB/X/3uEA+uB/3mIh8icpLb8IRIFiQR/Mr6JugFAms3IQlyz7J8/vnniwwxbZlUDoTrM5/5jJchaZokwXmhWgnuTwgt8PI+6itF6Yllo6bpu9/97iBpwxpB0AIB3k7TZZddZnvttRcPLx5oL8qN4WNSzjvvPPv0pz+tfT158/FqHIMalRzbx9fIsuTJii0PPAmiEWyNy0ODz80335xdSL7+ZVlcd6QiEND9IRL4/PPPZ8kcaZ8B7pG3vOUtun8rJ9G+zJMntFgVidHEiliOmfNEVfvPmjULMteUeHqii7Uawllko/MiihRP3OSBiEELDDvXSypS19Ps2bOJgyIOhrd6uRBeVAyQ9vnEJz7BQ7X8kPQxa3LPUP+QAuH0w8sLiCxVkiXmyR6fSxyYH1wgpLJMsF5EUfuNYAQCus5lwSMLkutf8jAk9pDgovtDIQyVynyAMjljSiYmcZrqp6bKANeU7ZWAJLCuWQyg3OcQOWLbqB7BM5BnoQ0HBIKgBQLUsqOYOHEbWM94a3YZYiJLg9ZRoin2g1gPb4GSVay8Pcc64YQT9DZM88XOmVY6ENFwcXp3E25WKgvQLy/aqb6MZAQCkjXRSwoWcF9gf++99+Z+KBc41/1d2b2pvoh4Qcxwb+oY5fJsqt0pkoaors8w9XIt6rvPLgcTJkzI2dz7779/rhu8Iut7BsLFGQiQSZkuuOCCHKR/4oknEgDsNZc0z3S5aj2Skv/MM8+IjDUN2texiAvZfPPNzaGqGCz/vfS5uDSJldNDn+LLuWSM4N0hIx2BgEjNnDlzkNPwIrlYubGIe1LGtNIkFsWJ+TADaqOSrOQKrMtyJ7cmjXmyn7mfcV1C0ti2aYysv6c5jg9/6O7uznU+77vvvqz1WOjT1axFCIQFLRBAZTtByrBaobvFG2QTAqN1g1bKFxEiEJ4HLQ9JMkAFPQzLZWrknvjUpz5lgGUvhVEF/PG0TIycH2zIOKXvOr4e7KMBgSBnAtYzl21NbUubPHmyJzlqNhQQCcTtiKC13J6KWwWyttM/+sl6+g1YLt/rssjJwu+TcfR3pmTTUrKOSgVUJeBZaUOMQBC0QAAhzFS8HSayFlHkJnNSDzoRM729+rfMlNKg3n71hiuVfJVX4s3bi276WBBvrUNn7brrrvNWtcqU5P2bvr4nyRCUh9FgRNIAbl4NEMqiG+EIBHxFC4LlsaxL9gRtPsWEqrrBkNTR' $Speedometer &= 'VZalyN/MmTNZ9sf0BE7Pk2wx23rrrW3q1Kl6Xoh86Tv4F8jy88cnIen5xLORpIgc8oEOZGFVTDYECARBCwQoaZR4G6WOHbFhsnB5NwUPOr2l8jcfw7EseILnrWSQNcWi0XzQfzkeDWDZY95tR18qD4aWrhPJDNIfox9XXXWVJ3U6RzaSEQjIXch9wD2BNiEvcbgY99lnH+4bkSOv5VYJSfPEyWdVX3PNNX6dXpp8kpFerpDO0XrFpdF4zvkwCe3jPQY0vYh5WY78OdOnT88vbZdcckl+hlpVCEQMWiDw8MMPE2uWNckOO+wwbx0r6235eAzpHIm8yG0waLFLxZMoHgSr3bx588qxK0zLFi6U1FH/LicTVGYl4Dj6rugl8ebN8Xffffes9TRt2rSyZXE0yGwEQpwaF5+eD7qH/TPAa/n550jl98dWW22VE3e8tcuTMi2DAw88kBdP+rBMbbeyhqP28d4D4CVHtB8kELJGTd+NNtropX/hQBC0QOB/2DsTqLvK6vxfOvf/tzhVrRKLLWJtUBRNAGWQIFDUIKMjFCQ4a1psGepEBWoFhKoIiFhFqyggogytQsQWiIUiogxBBUtEHNvSKlg79/T7nbV+az1rcxNuyP1ucr/v3Wudde498/Ce/T7vHp7NiI8af2RBbbbZZjWodyIkk8pZZ51F+rtgMDOxsvYiU58qv2rVKn6PLQ7Mc9rROAeIUu5p0aJFgwc96EGOuCsJpv+nnSTVTrc+jwTKPnc6bJ4JIH9w991323GZ3St4xr2UHVqlK9E15rn6zLx77rlHomLfhzVc+2M89KEPtaYiy/K6mWrbqAOLXMbAILMU01oE0KDuJffKxL62A88/NGHFY4+eSNIkB4HImt4hVT522WWXuh9TJXgmfpb2yQBwIsXaCYOYqUnct88Xv/jFa1UKTZpUrdCkCXQRHaO917zmNRAwZkCvnZiuw4kBtJe97GUUR5dsUhcm5092cH73Cvemm24io3NswMhyOEwGEgs0lixZojtzToGy2jlmcHWW3UJ8FgKzU089lWDpvm385Cc/6Z9fAiDJhI8//nhK8PTPSuCjVYU2SGH9j370o8bz9ccX2OlKN34Rcbkln7g+1lFyiOPYqTNXagwlg5ITTzyRihhk5TFxzLTucl4tvFKqCBaZA9z4TWYvFTVYn3QO3iPTCOCsSeU1dFnOtc7tu+++LOMd8D8TE2xjAibiwyCdnlixdmJWCRW57LLLCMfoDjzwQGJsR1MUTZoFrUnL0ISVH4sVVrOwZAwreeJ8IkzlWKpwXaqgs7NWSQvUFi5ciBUt0+THVotTqVUK6rK5KmllErAI1n/6059CVgww0bVl58pUgQnWJuozWj9SwE38EBYGzkWsX38cwZXn16Kmhc31JpnIKu/5cdXjfnaZcUbKj3/8Y6pSeM3p1vIctrdscx4vXfMeF+uaGYL9YKdaVjPuqcno5dbSep7An7q9FGTXqorIn2gbdJ8FCxYMrr/+eko6sWwi1576EsssA88ttthisM8++zSQ1qQBtKHSBGXR0YkQR7V8+fLMtEoFkx2MTOEqvIlwLMGL9r3vfU9rTi0R5fX01/aVr3wF68zYgUkFYRYor7VG55IIgBDnsZwJbjzK3pDUgRWNZQKpCl59PgA06pi6jOMRUI0byIGAwE6rm51sZuS5jRa7jG1KygcIRXvgJ+hPkPnYxz6W666xQ5zX9yqYqoHhef39PCfdnnfddZfbDnXnrlmaVNekADuF9/7oRz+ad+i3qIXVduAzlw6E+LMNQofDQAbw7nVcfPHFJFQAFm0ITZq0LM4mAyxTHe4oLAykxJe4DdwEKDZBimCIDnRinYvXAlN3gsYEklpg7Mhx0fp/fUXlXl0Wujs9fz4PwQXzaZekTKk1T7lfyITpZLCcCT6MTbPsF7/plOgw7WANKvcZYU2jbJZgR3CE2N44Lsfjv4XjmfsOKHZt/JcTbZjOmjhGYpTktXL9tdde67lYZ6fu' $Speedometer &= 'dv2+3hPiMr+DdLuzXR3IYJ2j4obL2UZwO7o00b2ecWe2nze/+c0AnwTmrPM95Htj4EY1kDjW7ErGUvodeE0Q2sKheOaZZ/a6eIA0adIAWpPTTjutQ1F8/vOfx+Rvp6WSQ+HRiQpyMoA6R7OTYinHJYDrNYOEc31mWEJUyX3RGY7l/NVC4nItRC6raf9M0y7GkBmDlnFXkBXDfXXEEUdkdq9B2LgojcnS2ihTe6VEgdzTfXnW7GNGYM8ptemmm+pGxNrQn+uJT3xi//uZz3ymbkv+22YF18aLkbHndqwDvOFiYnsL8AsGJB9lO+6F38QRMfWd7MMe9jBBOYHfXJ8WO+ZOrHdZMtm3QvoPgN4mwZnPkUoFFDm37bitFk8tmbrIGYzmoGMCkrrJ8wrSaa/UE6Z90T7nMUhr0gBaE+ghuhmOno7RG4SOKisVmJYpFAZSM9uUCbg3U9FyHSQLpLtDywrLdBkJjqh2oEIcmxWNeVoSszNW5pqr0/fvPQvUsFJS7UF3nyCI+yfeC4sYLmk6H58Fcy0h6R5m2WMe85gE3LqfyLIjXgg3IdYoXPIkg5A00icS3HbbbVjwyBbFZcoygr9pv8apCfTqe9FtnbUcBWdmqgLGYMOn7ZFEwD31933wwQfj0u3LCS1dunTwvOc9L61uaZ0BQHAsz8e1jNY2m2S8aYIzwxmIO/MdZvJSWkFtA2R4kjnsO57IO6jADE8FCTK60m0nWKAPP/xwPAUdOnow/6RJi0FriQB0bowisUrUgOikrkhqATomXKFkuEVnO9FEAUEQnSWddV6n7oqqyK+44orBrrvuOrZU+QwSz4B511Ugq8Vn2iWzU00IIKieLEffgUB59913h6aFdiMQA3zRlnQ38kx8Pz1NCfKud70LEOQz1D1KXBFuVKxxCa7czti25OBi4EEb53z9esHR61//+r4NI8asaY1LV6UuTABfui6rSz3Lm/FMqMd6+umn8zuzPzkGNAvMM2B8RB6wJvmcfM98f3feeWdvRa0WS6WWeQK8w5NmZvYkJNsMgxVifbn+pz3taYPzzjuv917YJpB7770XdzwxdWSlzvHG0aRZ0JrQQXUzHVM389ETzE0h39rBOdJknvEyPSv44sWLqTFnHFjlvcoYNdc5H5eCs3MjPb6CBv+7zDp71uj0GnM/txvZRZHWF+OPmDvltsq0g7P6nLx3rEoAX8GLLtBLL72UTof/aaUyu9KOSACGNUN3D5QUPR3Gc5/73MHRRx8NOTLB+1gWeJcVqDuo0M3oHCsb7lIpOLLmYp/MkBbYtJbVEmI77bSTlttcn7+zTWGxo8wRQCzrNXp/ArT8vpyPKE2MfVQ3EfaQiUL5Lmrb3WGHHQBnujx9L2MDkE6CSM+diQwkA9h2CcOAFiQz4plwoZ977rk9CfZJJ53UobsHc1OaNIDW5Oabb6bAOZYDOj7dSpZn0hqQgMuRXG8N2H777eUgw0JA3cvsZLKsEvsL1MZmHahxXyg5gsFTOVYx044R9iWXXFLBG/c+ovWvSVon091EJ4Jbj2d5wgkn8KzpBOt75z3UwPz+GK5Li8h+++0HVQcWsB6I77333mR1sj1WNNoyPHdYgrGGEFyNRYIMX47RT094whMMxMb6pmvTNpEuaKzCWcMx45bozPk9cpYr07bbbgsYrIMVn10m4KzjAKa1wUywYIKrDl1kTKQDTTMlkRhoMnBIYMw0rhjVOlCsAzYTAhggJNULbb0O/iRexoWOVZlvizY/1xpKkwbQmnzqU5/qMKtfdNFFjO6TNsCOxFiydN8Z5E2HibVN0IZipIg5HV9mKBlTk0BtbEkEWfhcUAVwrPFwyTae3G0GsLM8Qan7rF2a6OrWhZmgXo4vStgYiF3rpNb2hZhhy/uw03X/tOxCeosVjbZI4XwsuXvttRd0GQCzPuvzhhtuYDDRgzIHGD/60Y+8FmguOA9WFQhwkyID0JftxiLZWDvgqBqpfSS4I1kAsJixba4X3NZ9' $Speedometer &= 'R5ZWTkpQxRzgLtCh/WiZcpskpsU6S4JRBc1jdWHWwaQubuYf//jH+wGNcb7IMcccQ+UTrzETStSjrMcqjbUNXd4aSwNoTeaIS0qXJgHU0g8YFyTg0eWilUGFJ8AiTo0i4KaH9wrmu9/9LoG5NWankkiG4lo/4fheqwHqFGHm3qp7oQIv7oMgcmp0CkpZp5JvMjrVRtIFCJTJXMQtSUajdBS+A9tA7pPZeLg4AU0en3g2OzQKblN420oRWXyeck+CLo6DtUT+KztMQZ9UMbRd3j3nzAw+KxQggk+vlbi5UdpIEjqTqMC1Z1koZEgJsNFcnE0EurYVy7+RhCIgr0kt0rSwD7oPGo7UcWPNoE0CXecZt8h1Gmph22OwjDfDQQSTg5a0yBlOQAUCXP+nnHJKhwymUpo0gNaEtPMOAIV1gSyzHNFVFnTXGSulssj09u22227w8pe/nI7QDqy3bFx++eUqlbSSqKh0O4xNQesO87qOO+44rsepWm0yvg6XmZ2/lozWQT6wBIkMaM6MTOksLLvDtnLFmW2bNBy+C9sjSQC8W+JuiE0j0cBSS5Z7AmCxD8uZC94EZFrAsgP2GrC6+h3YvuVQy2w6j0cs0CgWrhzY0JlWEJAcaXmO0UIAmvh+BPvEGBqHWrfTai5wAriTeAJIE+D7zMeZ4T0UiFu9AHBm2SktxVTLMIbV7cxCzWxixHa95557os8Bm+j4aQNpTRpAa7JixYqO7DVidKhBWGspJqVAHUmmFUKF6Hri18h2Y7lldGDiBrTpmqpcZB5nfUXlJS+W100tu0c84hGet1+HZEFlO8vrrruOOA62eYDWs8ZDJVDK2pn+T8skIpBC5BgrJXpyYh3gDkJXgXe6CNMyglXEjk0wJkC0vZrEgcUBVxjvH+oP267tCvd3nsN7ZF/iLm1Lo7q4iDFiX5dVoNZcmw+skkUCXeJgcWGntbQG6UthAUUL7k0HDCxLnTJOEJltVos/XJPo5ExGwGVJJrp6y28oj5U0LanXiHHsPSLnnHMOx52SRtSkAbQm0Ap0xNRQt5K4MS1Gyahf44Aclcp7lsortyUG6Pzzz9dNynEJCiceKK1aGbNkpzq2EXS6iOyAqb9Xiylnx+mEQLHAdpl6v+7SgJouy+qyy9+CN4GzvxGP4XGyU8XKlZZdl9vuaKNa2pg+8IEPkLFJOyAWjRJffSLBNddcM7j66quhKyARgDg237vWWDvUynVn1ilB6GwzcjFsi/W7j+2rPqe0Nt+vNEn6HNzbWFjzWVaXMe/OZ0/mucvyXY3r+XtOdVS2I9ojbkwGL54PfQkNTepgts+4zqyA4H/295sirAASbqzIcPBtxCCtSQNoTfhQydLsDjnkEIK282PXYpTEjWYKVXqCoTE1uQySR8hJOYbmeLj0vvrVr+oiEgjye2wWtFoHNPnaSFhglJyKrSpOj0HG1xe+8IVkIR/BQtLEd5jP3azLCqCrlVbwn5PvQyBkWzPeTJ41fuse1R0JZ9SNN944uOeee7CKEItIVi+WMOJ6oCbo51tvvfVgq622Yr9KRJsxammdsw0z59jUBR25fXAcOkySEBCtfEot/ZXLm4xuoYR6hf8u8/2GWJ4ONzn6QYtWBc2+j3F8H1pe81sgwQo963mw9hNLxjoJwW37eZ9aBOt/79UBDJZEvCSEb3Qz38tGBtSaNKLaJgTAdzCZ0zHQMakoKnnn+kglXn3yk59MDIQddz+iu+OOO3oXqK4mJDvH2RTunU7ac9VSSxnnREkg6jEKICWbnT1pYjFyAIwWXd3VcINlJ4elFiCGu92yUGxHG2P5LbfckpY81o1Ef2DHbWUBO3faLd9NfjN2oMjChQsHDHzgYktSZLbFOiPdC8uJycT9xDEcrCS9x+rVq7Xk5bFGtOQ0kPa1r30NcleepQDbZy9wyVJaWJk2edazntVNyg2bNVaJeaVagO+f5StXroSGhvY3TisepN0AUUI+oJjZCBpTk2ZBa4I1qCPD' $Speedometer &= 'kngzOpkSU6apfRyuLYCXyQTwiqWCwZpBhlHGVEy0ygAUD1AbJBgzKFtlaOo6pLtY0bJ4cpPJ1FKtpLJ2XL4v4ooyfkeraFa7wCpCqSUtC+xDrBjZk4A96DbkPrMtUBoKtydtN8ltETv7TDIRtDORgUdCDO0LfjXqjkK/wfdGXU+CtpcvXz6YKZ1GB4zlTKCQGcVkufbrakWGJqO7EYklsx05EM2sdJZZSP/Zz372YOedd+4m9Iy5Dq2kuNY3ocwc7cA2vGTJEjkCx07zA+hnYEDiAX3CYE5IE3ruKZUmH/vYx7qZeoNw4wA++o4mA0t11Vh0en3EDsvOlo4KlxKJAyongrAx38PsbXkjttVtNJvCuRixLlu2LF1XXLegTfJHOthQ6pOS1rlqUarWLN6FLney0wRNghnfJ7xkdHbMn/KUpyT/3tDYrpzYxsB/6iCaAWixdQhMAfl2mJXPjbgnXbrGPnoPul5Zx+S5EEMLmFNUnu+1uudGl1bmCUs57++CCy4QwNcYQqlTIDCeJAgW2DNBSNtxHbYXSqIRz5hVK2qs5nqIGdDECFMjlgSCbsaaNmFLWpNmQWtizcJuZnTIx0gnl+SNZtsJ0tYbnCVdRloyKPmE4smRK5YEgqTZXplUJ0QsEokRXkutivC4xz0Oskji5frRLDI5otoWw1YLyEsa7HrbqRYG2zFuUQEallo5z9jH4yZTvyCJieMz2THyG2uY5/T9E7Sd2XPpIpfOQ5JUY834r+sSoCZYc38tOV4j8ZsJ+piPHgPVxGL6MO9fe+21ff1WLVFVeJ987w7QJiW04ec///mD22+/3XhKrg8PBwMO27VtbVz6MQvFQylCXBrF+Seo2Jo0gNYEd0537LHHdkcddRSARFO/H3y6izJbbux8RFJe1Cw3OlFK87jdpESAihUNSR4izP9YSFCasM97vRmYPrvSRNBimxAcyVmmWI1C8FIJcunkAEJ0vAA1Jvmiko1dySoGnhNgpQvVdXCXYb1jWaVpSF4qi71rDUzWennaMkFAqzaxapIq65pbd5qHZoFVqCYBSMNitOWWWxrzpyWJbPYChGZXHBRSeowM+iw1R+Y4MbtIeBPU3WO7vmxvJCdQpWDGzdrRZwxmVZo0gNYEgNFBFwBrO7Ux7XwkXyxWNKaxmfiN06Fzy/gJ4nAYHWbW5q233sroLTvIiVloSBQg1of/uMEorUIM0QEHHJDs8dxHyQ5rMtvxOWlRkjYDd3iCIuIYSRLITDjdRg4AXFeLnNealzmxXIsd1hW/mSwhBkD7xje+QaeGy1KwCCCz/Xss1xkYLtiSooOJChwQRVN1A5LnjH2zox4RQDTJ7N+sm0odWKo2MFAkiYTnS5wa8YKpG2dbpP/QMm+iElY8Mi2Nh8yqLcxtO+sr6vx0B5PNfPbZZ8PDRt8xSw+hScvibAKnUwfvzYUXXsgIsfIsJeVBdj5uN04Zyj8EnQEZVnS6sr1ff/31LLcTm1QQOsqaeogE5A6tKpBALSkfmswqgKYj5dkLbADSdKqUbOL9CJSIrSQrDaDPtmyj1clYSEEec9pa5eBjygLUUMPgHvM9y0s1lBrB5d///vclN2V7wJ3H9HvTcsN/uQLZtmZPC/AyE5pt1i2Lr0l+w1UfYU0FDME7liWhBEazrn+w6mFBSwsZCUlPfepTbV+ZOW4bQWeOVSd7z9nW8Bw84xnPoCLMGBtbkwbQmpAx2VHa5IwzzkiupjVmSObyBCjrK5433YKehyw6mLGtpch6rGurVq1in0m5GJi8fzvIdHvV5zY5ioMmQ5+7yyplhstrB+s6961AKNtmtnu3EeC5XZ7b9VkhoRKJKh4npbosPYZuJ8Rztnb3gGksfHYG4LPMNpLv2e0mkqWNV+Pggw9O2hRidJnqPSQv47h0kO2xDlZTT0MTw7PBSt0aXgNoTcb04XeY8ffZZ5/s0JxXF4uKy5gfR2iTovzoU9tDcBdRVL0q16pYxqrA0xJSR5f5O9fZ' $Speedometer &= 'Qdv5u23dp3bWKkOBa5EKECpIcZuRlXCSCtdnmqSneY4KCqpbmGM0aZLVOCqBquI3wDz10TwQdZUg3vsnhIIYM9zvAi+sZmS1qysmleVq9nzqJa8XfUHVDTwb8PqtB0hr0gBaE0redEuXLu0JCJEhnbD0BLKvWzw6rQyTVBCQSFJqR0AgESgxIW7jKHKs4CBHjHnPKqwRJJ9rpQepQCpH7w80Xk6wNVInV0FYTdWvLpTMQsx1BtMLivN/k8bUzzSCC83/844uBJe3NWblhtxjjz2oUGJCCfoGnddXN8l9ZlGqrkq9Zza0lmNomaApwe3/QEBakwbQmlC2iZImFjuv1hA7VoOOv/SlL8GxhJsx3X1sj4IgJmMi7isCZR//+MczmjT4ldElsRmAmQp0xjUCrxaqHPHW4NmRQF61klUwFLI211pSk6gk8xjpXhs5xsQRcQKvBJf5uwK1fF4CxCZNso0zCUBykFctZnXfuSyVs0zdRtIWMW8RA0zpu756QRksTtwFDHhE31CbGRJlrtUEKjJgTznlFDjlRnxxTRpAawKw6WY4zgYnnHDCYJtttumVYXbg6bZUWV566aVQWxDzBRCS4FNAMHEXAEWqKaeUxKFHHnkkxawFj8yZoDcYWxBvtRomxUgqLiX/u2217CWfnNsqWXR9LZIKkwByn5OljNY1UNzOMxVycofV9pLHzt/ul27wJq3aw9pKEPn9Jl/dvHBz5uBY+c53vtMPiFNH7LbbboPPfe5zmU1sHNxEALa6Id2b8GXi1tx88817CpDNNtuMbbHyAdCwpJGoszYF1KQBtCY/+MEPOtiv4fahqC4fmy7Lar3RjI15/corrxwoxKtddNFFCRoAAoC2SbpJyBhilCbggdCWrDwAiiZ/lZidwbiUVIIUlzt5rrQSDLN6qeCqJSw7r1HiyCon15oC4EceHSsl49DfZgsmIKwZjpJ31gD7Jg2c3W/sZpaSm2figCyfEUThDKbJIMWDQVKUunuiGbo1PMOqBjOWvB6cuc2CBQsYQPdzBAqY1772tXBqQgsz5GKbNB60JhQe76jrB0s2H7gdt5aWDNBlHbUIAWOAMzthJmqx7bXXXvnhAs4mZkHTwodVD1Z/BAWAZc9RZIAz72ts6fcZSG8ZIBVqPZcKNAGb4El3qYpZyQD9fCdVBIS1soPncB9B0v2JljJAVwV8kqRagsjfPGfmAGKvmfPXcmBNmiQtSQK2XF8HJzlwmeuitZApBzxw56GDCeOAHBeQliEEk5J8d5Ix41W54YYb1DesB5CRwADfH9fYU8/Q71Cijz6oHLZJs6A1ueWWWzq4uwjcLJxOQ91qFH7eaaed+KDSupKgAYDUk35mPNosSlqjdK2S1QlgIrMzU+FV/pX2YqyJAhmfBaihiLbPiWsDuFVXIMqqBt0jhVhU96zXXIGmQEhOOt2YmWWV2aBe78j3R3wf3GGeq4LHvFbAme7LdIsilZqgSYtBq79r5QO/Y93ifN/M57ikXvA7TN3rd+13lZx9E31/XhO6H95MJAlx3Y5YtKuuumqwcOHCAQI90gte8AL2A2zOHKhJs6A1wfzcXXbZZWTWCM60eNgp50fIaK0Pwr/tttu0+tyHcBPZf//9DcyfSK0/z+11ILBqk+Sg9Yfl6UYRnIxDUJDG6zHlMwN4wejNRMwI8zpRQP3GG29UAXtPXnM/X716NYzwuAeI4+jnD3/4wynhwzlYxpwJd4HLmchipSg3Wa64sHGFrFOVB3jwcFWQJk+sIcfnfNwPx6acFf8pYk/74Fycl2vAfQFR5cqVK4mboZ6lz6Zm0jZpQC0rLxB2MbjppptIQoJ0lcHk4Oabb2ZwCPchbWleWNDSzZuJROq2rLmquG4SkkXiX/jCFzI49podhKX1j5KBvfvzPe95D//pe/o+aMWKFbzrZklrFrQmV199dYeyo4D3KK6mj3zkI4NXvvKVxhBlBt9Q5fGQhzyE9G869BpnNSezsBzZ6lK8++67' $Speedometer &= 'UVQ8s3Qxqqh4jv7up3POOYdCx1oKPB6M8ryrwbJlywRrlTfNeWZ7ZQ1KwagjaxQi5wJwuc5rS8se1RlQpBb+FjT6Lr0Hz+WIPmtH6nZ2H2hboHDpt892tMGlkbDm95jWb0tOUeif8lgOSrLtU2EE0MQggtiotA7XpJLK6Zexqiy3k+cchi4kZ6CJSFROAMTZ9j3XmnjSCM1goKO+oSQc5yB4nf1tsx6D334b3DcDDsAhge0kGGEBYr6mTMs5k8RQY8wSOKYVj++a7H/fhzqqHkN9wfvDQEBZPJ7VvffeOzj00ENxg+KlmZeWtAbQmqCQOqwZdNCjgCOUDaPY5zznOXxElrjplbYSHyVxaZitsaYQrI+lJ4FY7cjnHA8WyRYUKeY52MF5n8lhlrQVxJBgaaqlWLBWaZkDJPncaixbgmMVYs2kTZcic9jH3//+9w/tRL74xS9CUEwAMsfPd2wnxrErwajvWfeuI/ukTcBF2lemeNGLXrSRdGBNdJPZVmm7tieAFxZU3FD8N46QfRLgO5Gdd+KJJ7qt79jEEf/fJzP8hz/8IXGs7G+Hndx6nivbM9Z8rLXZ+VeyaIRjE+8EhZDr/QZrUXrPYTvO46WlinZMOAe1ib026S7mnOu10ixlwpMDLwb7NXPbZ6XOqWEbJJURz8x+AmJAPoldu+6667wCac3F2YQRS4dLCkDAxzCqC3HRokV05iorwJkK0I7ZDrsHZ8i3vvWtwb777qsrgklrSsaXzJksKy2Nb3zjGyWUdLkB9Alq7AgHCHxBKju25dkAiplrieKYqfgYvafSrASyzrV2cL6sJ4hCxVJhBqbXhaUEN3UuM7bN47sPk52c79d9Kk9adppw1ulO3zikFZT3vdomLexPZ0nBf9quVhGAuxYn5lpesz5oLf/DMvWFxeMtYg/BNK7xI444gnXqE4+lFa5WFQA81rJZHt/2j0uNe4Bqh3sbmh3tfWjVS8Blm+d6/cYc7Oy5556D448/nmP57TIVgDJ3JPWMuhyeM2rYSjqdLlgmxHWZ8HHuuefCBMA620H/fj74wQ+iD+mr5o27swG0JhTy7lC4hx12WCq1kffH9XDsscem+bqfp/usCrFHZFKqULNMiYp32kWg+da3vnXw6le/Ot0/KmxG28zNalXJAWbteHR9qtgZWQp47CD4nyTA+TwJviWTy9Gt6/rzCggdvXoOqkUgyV9EsXdAteBLAGZWb1rU7ESdBKKIQLMkJhDTRkdMwsGGB2hNfDcOvPjPu6d+Im492hHLrRziexSk2D6MxaT9mDGc8Z/OmQSCtCdqRpL9zT60Cc4xtO3ZngRiujttbw4I3MfvgvgmQRXfGwMbzu+UheO15Ai4sv6v+7kdz4TrPPXUU4mN414EeTk4mjPWs0qDgsuYwSjWUt+nITDJN8nAUsss+xG7yjtnEGioQ03ewtpJW/jsZz87P0BaA2gNnKFgYHRWaYwaJC6YYn7MMccQHyCoEJxUSxKK03WMlODrcfv8IOeM9YGCxSeffLLZksbUoJywVmINIxGA3yiyzEZjf+IxEjSzLv8bDEysj6N6rAJa6vog/cWLF5MFRfyf7ifoRrymvuO047GTpE24zI4N13eNFXKdI12Ox7m1qvBblyouJzu2TTfdlN+Z2ekom/g629EGlCYJRKShAUDTDgBLTAwwWO4AwwFZWlJcZtuzk85MvhwMfPOb3+zBE+TYxGzamTMZKkH7tA2nZS/BVLrRba9sy3Vg0T788MMzXkqSZi3Sts/8nS5Yr5t7855z6oHEu9/97v6cWa3D65h2Scu8AIzfgDMC/fkv96HraokqnqnWS8DZQQcdlIA/z2FbpNoA++D23gAgrcmE0reaXHzxxd2DH/xgeHPs6Nep1JEfnIqQ2EGC/1GwmaWTwe3yp6m8AXaAByw2AoK5InQCxJw5emcu+LnzzjsHiM8GDiCVUlqWBM1auFBqPj8tBTxTABoWUDpQud6yDmqOdl2Gu4BkBZIN' $Speedometer &= 'tNKpBLO6gJYK3UtcJ+u4D68Ja+hJJ51kZ5pxcVpNJD7ukww+8YlP0P7svLWCDBBcTiRHbFhpkhYnaXIYSGSiiW503hftDmDFNrg6BV9MWkj9nRZe/hvrhsUJCpx0nSd9jHGstDfiMN/+9rdrvc24NHVPMu0b18l5apk0BzTJ39eDT612fgta+/wmPKbLzXh3wLTFFltkqIHTXKCRyVAF+w5AFiESgmLv1++8xgQK4LCI4RZW53k8n6/vxufOeXoAf8kll3QzVtY5ZW5vSQJNULaCswRFWnhUSOvM+g0f2pOe9CQ6/2Ep4VpZPKejb9LmSR6o2Y9T7+IkuPmQQw6hw+rv86yzzuqD7AU8PpejjjpqcNpppzkSNxi7H4m+4hWvUBliXYK+wuzItKT1Abkf+tCH7i8TNuNx6OhQcrguVaYCR87FdaT1U9dPjQciPg1qkHx3ydmWlCtSuUB5knFxAkTILHvr6sYjzdUJnQWDKMFQApvXve51hDjYRnur+Nve9jYTQgQyg+XLl2P9SPdmurwIAseiD8BhP45tGxPM9aDsne98J25+vil0BsAvMzSZsEyT9Vdr0gra6Nzp5LVKey+27/5+dtxxR0AaYIvvwLAN7tN4Sc7FIIzkmX65A50k2fXbqlyS0y6Vn5GBFQPuBKR++25X91NvQUpbZGi94kq4S6bt5ZdfTtucGyCtuTibYBqG++otb3mLHTZTmt7XGRypIKk4wEdDzJMfUcZyqNxcp1Vthx12ENSxzdQrMO+bTkK3CUqIeL0slp7UFJnJKVjRdeRzQwFamkqQ5XHIpqsKLiWtGV7f1ltv3QMxOzctX0l1kHFkiO4pgeQjH/lIXKmVHDiBXD95nwjxJltuuWW/f8Yt2llveGmSLsKnP/3p98nQe8Mb3kAwPmAsk4Jqso9tqQdXHgPJmr4XXngh1jcHHbjA070OyIHGggBxBji6OnEjCqzYN+M7bXdVn7Ed7PWZxMB5DFjvY6de8pKXMNCkndK+uR6AGoCt/83gFusYbfi4444jFIFv1fav+5Z9XJZhBHPGwqpFn0GogLcOzKQc8X0mUCZD/eyzz7a9ZYiM22ffoeVRqyWDPNrV3IhJawCtCQ0ZxYMC8qMJHqvsXEfNUKxziEk5T3VjqDCr1U13G6Ni4xXqiKmed2oUGMAF6hJiaeAYq+BUpY1y14SfViqsE9/+9rd5RsyxkPGM+J+8Z0zwL9XYG+YZlF3jAuEz60FkdpYZT+O+iJ1i3kONH9OCUDO0EuypfM34Q9xeuo0mG8cAI9891Di6Bz/84Q9j9U3Q7ba6tG07CUyqZQRKFZJYaOcuy4GH1jcyAnGhE19p+yQLk3PVLEst9E5DLVZYq6u7kt8Ar6222op58qg5CUBTDwHksOAYmpAuXPepAHaqAHrqYHSPSQ6W7KMQOxZvrZ3VBSqI8536mzAHwkB0f/r+bG9FzACu75SBAtcx1dmdDaA1IWC9Y7SJSXlcCjw/ZOOVtByReCAoy05fscM3zooabYyOax3K/FgTBEyB5AhwrSzpMO8zZ3SeJK6sh/dJziaehVQWWtLsFIhrc32+l/rcM2OOY+Ke1GrJvLoVjMERFHpPtCVLsgC2aoabHa3HypqiuKWw3KFYOT73K6DT+rHhpUnGgGExgnAUsMR3inWoDuak08msRS1Vd911l0Clby8HHnggA7n++Omut40Yz3jHHXeQCa2eSBLkzDY1ThNwhSU/210CKslQ00ps5jMDKQZVCQIcMNWaoJ6PNgxvF54ArlfQN/WUGnm/3oMDNEvFAZrhwXQbraZJZpwDNXU5bWi//fYTGDvPRKh1Ist905veRJuilNTUPewG0JoQwN+h4CAhHVOatyApy4ckVQaxGZBLpuLVQuSHKBO9IAL3KEAyg+pV8slEPzUktmmmT6nuXxIreG4mURhsTGdHZ4LIqK7V0aw4OgV+U9szXYk168wpY0PoNAVmTrVUFefSQqb7yGPprqyZdI64PV/G' $Speedometer &= '4GipgKpBwKebinXGFG14aVK588jQAyxlLd1KWKwVXIuw8ZIkD8jrB6cVFhTWMwCx3QueyPglJOCaa64hy5j2lTxicu0J7LScmdxC+SevOQPZbeO2y9RXXDfX4mCjlklKHecg0aB2XK3uIxDJ/XLfqbSgOfjmnuVNxJp/9NFH1wG7z9b9rY/qOqyvEAOzvFr6y4B27WKyk25PMmbRgfR1gymRBtCaoOSwnPFB0Zk6+huXBS0/MH5nxg4BvRS7zYwwt6sEq5rQCRYmmFhFrALVSmdh8am2oPkc/J3cXxVQVckAfOZaArbddluPq/LLa8hO1WdJrKDAT1er+1RqgLT4ZXYWFSF8726boD3dXh5D8Ogx6KDdfuOgWmlinKPuukpcW91WlTdPkJ70Gx5L8K+7nvW2N6zIACzcn7g0aZNej5ZlaVxglVf/2OYl0nX5fXRUllXLtprfR7bnIglakry2tvG6z9SSFHv9viNjBkkw4n9m9fpuHIj7GyEWDT5I4tUKNYfnS903Kg9bZuUC0ii7RTnBjfqBN4DWRLdhd8UVV0AuaaMeW4akSk4F7LFVemaCMhKm8DfLctSage7M0/pCAgN0DI6QKhs+y6dRas06xBJZKvu0QPDfmCxidbLGJpPuTtnTE7j5vDKOpro8r7rqKhWx8SI1XkygrEvLOJQkuU13aGZ22S6y87YDZbTLvF+WCl73yYaVJlJP+P60WKVFO8FPuhRrHKSSba/+1jXKeXbeeWcoY3oajd12241AfQYgPXHtLrvsQjxnX6sR3eZ50yqNq1KJaxME0PaMrZKAFwBB1QLaH218rd9Ngs8MXBeQVKuZ4v8pEC303rffKgwAuKel2xFwq0P47ffMekEx8a7Ei+UAMa2OgtyRicrZriaeWR6PsA36vsFGKg2gNQHgdGQ9wTelAknz/PpKVcB27PlRIrizCCRlHmU/vJ5U7Mx1G5DZSSq7VA8sTxLKaY3pyd/J1G7nl1YuKDYAZtw3bh/iB7PYMNs6ssU9DM2Jy9jfqVryWEYnZgICnZP8Q7qRBVgCYjLpVKDpLsU9S5yQlruhNTpdZgA1FhI40ZKziknalQ0vTSpRqMA5AXW21QTizhOwGVfm73T9p8WFb/7222+HW62PY121ahXr+/by9a9/HQsJXoFk/7dwv2EBhFcQhwaww8LLMQQRmYiTNW69Lkut1W+m1uJMeg7c9S5L0FqOMV2idSyrM0DJQ5k+v30Br9+tgM25gtWMOD2zvVlXqE8Eag4CR7agsX/dB28Rg0/6wMFGJg2gNaHj7T796U8PLrjgAtO/mZKodFzuO0dKKiZdFipO5qRCw3GEMsui3xlsW0ELo2eUqx+xCmFOlILK4uUq+axTZyZaupERKQ18Bszdj8Db8847j2QB4rhQWFkXkY6LGCA6P3jnaBvEa7Bca6aleWgzCZz7SbZ1hWXsSxwbrmzOS+A/QI4MO9uFgJt1AEI619NPPx33ar/cNqGy99wbVJokAKvWsqFtOIFZtapVbizbpe9cK4yWK9oQsWAsIy7MNgRIMylFC25y8klES3tmGzOFaZ8s9/zGpSWtENvdeuut1P+sxdFrhYJ0yfE9Mdjxmtx26gFaVglJIC3dRQ2xUGfV9gGgO/PMMzMpLJ9pWs6SKHudrhFJMm2s/eeffz6ZneiljUaZtEoCTVAWHSOIz3zmM7qlKgnpONK9UwHVlPUs/6OrExcFRK0mKgjuaqAoQcGMnmGWzmvUouN86sgch0m6D1BKdFBaonwu6UahXJO1CnUHG4SNKxQyUAK5iWlLK5rKz46SyaxRxe05nq7OXIerCa6qzPQ0C5PyP0yZhVfLU/Fe2TbdZp4L0Uojn9KG79QazYZB+CatmMyBOM/2nS5BpQI023MeP6tiuI1tkP9mWUq7kQNNQwIcECbrvG0wBxyWrgJQcT7bPfvyDb33ve/lHqDbkPeM/Wt9Uq+j503ze8tBad77tEqCS+6LzEvALhQrlahWSZqU' $Speedometer &= 'bbbZZvDJT36yAqlsYx5fKxj6bZQwHN+l7Sj7Nfsc+hHcsXgeupnB/gZTKK2SQBMbeIeCwQ9vqrkfWVWamZ4eklQKY3OTZJkhyFZJz64ZiZxv8803x9LWx6zNdUl2/Ve96lVwApmJZsAxgItnpVIT6Gg5GJZwkGVyclojuHZfwTRzsrOoMpFWjwMOOACSY+kEEoBmyRvWZy1PjyHoZHnltGOZpLUUW2bbKQHhzQVa9Qht9owzzmBd6h6Cykn+sU3QaRJ+4befQK4O9HSpptXL7WrySgVG/b70KYAF1730pS9lsCGg0F1ptiiAK++tcptl0XfXMzfxAVAHqCREgaLp8Q1Ol6R1i/sxg5vYPwbQuq2VTBKDDB1reQCydINPSsdizaciC7Wieb8b7CU0gNaEmI0OEkbAmXEUKTUgPyQtU2OzUmWsVH6gjGpIs891sHJfeeWVXLsKbb64kchchVE7M8oEbmQmJWim1h2dIJ1IZkllgeo1BmZXUCVvUyo0YgWNTbNDZB9qdu6xxx66YO2U7ETzflyWsWd5HVgvWK+V1Y4UAmXK8ExJMekmgnBdlFpAKffEsmw/uA8XLFjAMttGnwiU4EypQAdPAK5OflPvl7ZCVY4VK1bQ1rSE6eYECPbr3ve+97Ef5dGSNLu34hMCohUswyyyiHt1VSIRD2s8poObTNzxGhl4+U16/ql6t0jSZgjK0FfoJ0Trp0IbIMmD96Y1y3kMTCfhvdBNDuUTtYcbQJs4QGsiO3bHhwGzdR39WMJH5ZDB2xljoJIdh/hBJjGqnTfXg8vsuuuu69cddNBBxCmgzOeN5STdR2TZMsrz3u3UCPxftGhRBsXSSdG5oHCkp/B4ycidFoWhsSFuY6asgAvrAi7yBFwei6LuBN8eeeSRaflg/0pVYCFk3ESSkRofpEs8aTmwuhGbhqVuSgB6k7SQ+/5xf+kmNE6L5cuWLaON98urvnFZus3StV8z0F1/8sknk/GtnvF6sMKTNZjt3nVyL5J0Q1tkeSY21cSloZQZCVR0zzLP9oyg33CVss7kiimstenzqLqcAfUmu+++e8f9+fwWL14MYWxaOvldQ1QmEUpi++H9UtEFzwBVKyaqWFqSQBNiuzpSmCn3o+lfcGaHr1IkyFa+GjvKcHOx39h4dARqKjOBAZ0xLOKPetSjIC2EvLBfZrDpfBCtZUxYxAAygiGD57EmanESTPOcqGEHT5QcZGbYqQBVqE7KMD4zLWnsf+ihh9KW3E5rgPE1uJ45LyNkXK3GmukCSsZwryuTHzIpJN8zgI/6iNQTnaJ6hc16ZqB+AjUsXMlVJt/V/vvvbyfqPg4GE9Qz1YD0zJ5MNyNt0fix5EmkdqjfVs3CpK2zDRYgltl+9Ti4rHb6ebxMMsj2nBVVAAI8CwdNGaYwDTqufocJjqX2AQR36C6//+222w69juXMZTngFxyPMwmoHqvqWK3zWFGh+WDwObGkgWZBa0IdtG6mw96EjyXJIJMgNMswJZ2CHW9ac5RxWtGUAGssByzKVM+ySu46byxovCPcMVAI5EiegFyflZ2hGZ8qStZDY4JiNHbHYyiVCsG5Vg7igyic7jOv7o18j2ltg9YDQAedAZl3XC9K2Pdp7Jk1NnHLsnxm1M0xUZhk+GKBIKvTAcKUvP8mvqukXyE7+LDDDsvsX6sHEGSeGXe1Pfne022ex6ZtSazMevjMKJPGAIb2xffQu0VXr17NdrZdQZjt2GB0MpAJYmfAQdvU2puJOjkliMz/HE9dCjgh1AQ3qvch2EkAOHVxaOqT1BH2HWRLvuMd74BKA1qgGpuazyATTmYFoHl9tQSYxoEvf/nLgHMGg7OqYBpAa0KcRYclAxeZjb7EfvmR6CLATYXZXRcD62YDpFXiSpXk2szo1aQ+XykNapxGBS2p7O0w8p2PpMyy48vOUB6oWsfQTjU7UH8jtSNiynZQOc+qEnXgYGcwHdIAWn3XuuahVdl7771ZB+0LQNx25DzD' $Speedometer &= 'MGqbz3X8rm3f8wMGAQZaeqkTSrm4oa6v2m7ZfuXKlQI3khv6gY4loypZbXXpajVesmSJ8VZYCnsgmhmJSICFacju9PkM+54d3NdnuSZXtc+i6jpltoAabQqXO++JZCt1DO+cQS0DxQbSZo9mo1UJ4MPACmHqeI3ZQKK8CkzcxEWQPQURLMolM/ByRMz/9QUd2dl7PK+xfqwqPj+i+VLnsEp2WOlOGcbKn4HPLltrB5BAODmoEjjleZjXYsYCbS1lbp9F86sFNWk0MgbSdQ4utHbYLjZeaWK7S+Bi2wSw+L2rm9QxbpduS6UA/AwDGBq0jhCEb/utLk3btu0yKRncZ/vtt/db8Dft0Pi0BGe11JNJNXlcOSErVU5N0poK/VQHb/62T/Ebznuqx7APUPdn5us4JYGzxgeSmoiZRahOsXTp0v6edtxxRzgh4bzrZrJ7xwrSmgWtCab5Dp4z3AkRbJsdX80aIhAfXhiJUQ1AT9O/83F1kJZRqebsdH/UrKH5YkEbZo3KkWsFsAm81hqkncuKuDzPky5M50OtW8aXhdTt6vJayivBebVqTJf1tIntp1q7arusNDsmpgwLxE9dNNRKjIRec5saIzU0o1i9mNdez12zn5XaJutAs7bj+k3mtt7fNEgOEpG4pyzlVp95eWZD9cFs6VQnaEBIVhCMc07Ia7Fuel1kzzOYILt4k/9j71yArpzjPP5/90qbJJZBJUlbbl1cdssSwuR+W7k0IYpqiIotxKoRowhho8UyLolyyeSeXWy2JCoy5BKyjbsQe99n+/xnvjO/ec6Rxvue1/vW9zPzzDnnec55znk7/9Pv9/wu319qKOygWesMKQ06+WIh+HrguXTH6YcibSG65kgRlP/jK0fQogPI1ihddsYYY3wBoOkDilqWB6tLFkVzWHv37s0IumjPaLjKqfBevXoRHZU9y3Zx2LBhDaKR5i5OQ50ERai/6iApvMzGuA1GJ0XtHvZzBcF+fgAxAqOQfVn9OSo11wJjjDEmlsSokUxEWxTraNFvZGINzlmM0NPtzggvUthKuescSAoxBaW+2EEzTAgoKHrs1KlTRdi/TGw75z6vo16DxR4jaePHj0+jRo2qCM2reSCO5omdecYYY0ytO91Vpxr1G8ujxXDAmBaAXA+PowD6Rx99xKD2KBuihjjkgujiReqpSL8RNwkYZmsWFPkjBFgqhv1VsT7VZtD6TQcnIWB14vA6Up0UTd5///2xBR7ifRyzWipiG2OMMbFZTPamaq0t9+nKpGMY2Z+oXtCtW7c0f/58Omyj06bX6nnYRLQosX/FuvNgQDccR9DMwoULC7ouGR0SxvusdxB3LOSMxbiIOFLnh+4Ui1PnouGArpc4sJjb2OEZJSBqgTHGGBOH5kc5lzisn23RokUU+iPlEo9hK5kFinMmJ6+qTpoCEsxq7dChQ7a1aQOxg2YI2RavvvoqxYyx9Xm9izoWWbLAywrd5OKZrci4k+iMMQuTMPFXX30lAcaocxWmDtQGY4wxRjVnkmhhgzhSi/GASGZgk6KduuOOO9LMmTPjZJw4BaGiq1jHRowYQTo029y0IdhBM4guUjsWU5llB00OWHmf5sSVFza3jCFZsmQJ46GizAX7svzG559/TmdLOZxc8/ozY4wxrj+LumkQpT3oyCQtKbsG7CcTxNxXNbvFWcKSeJG9jDqTmiAxderUNHv27PSr2EEzN954Y0HHJmKIEPR/NiRELF0h6VhF7TG1HjONIHXp0iUKRaKzlkO+K1asiJG3OCIo1QJjjDEmzu+N6gLcMqoJPTMpDWggO7YMxQLsXaV2ZHWBbwhi39wyhB9HrUi/gHXQDCHagpmFqB/jXFURGG2oUUxsDLplOkFctPn48uXL5cBpwUeF+bJq9wZ/NmOMMaYsrl0eH6XH3JLSXLBgQayLzmlQyoAIKuh19YRynzps8LqB/HXJ2EELsAALuirx5FULpnx6QztAnFvNAH379k3695ecBlcj' $Speedometer &= '559/PtG8spJ9af7jhmOMMcbECTJ6LO2zGBRgX8+ePXPAQJEwaN26dRZiP+igg9jXoLOkJ0yYQJMBygn5wxmnOCnQL+g+ueaaa3RVoeG9cQZagyxASWewAeOf0EuLczGByQUI5CrUzFZy8vTcDRKxNcYYY7Ap5dFYskcaWM90ACJnOGfRdqFEgMQGjW1CdWsN0UWKPtrixYuRoCoSGDto06dPR91YA2bj8F3pw2RHrb4oMqdbFVPiGE6ePDm/Rxxse9FFF6UxY8bExa85c3xWRfhCOrY6xhhjTHn2KZvmN8uWfPbZZ7n85vXXX08gu4QCASU5NLlhnxQ90/H6os5QmgbQBzV20Bg5UeC1t2nTBj2yOMRXXSY4Qvm2vuD4yQmMQ2+5P3r0aAox6QDV4mfLjtvQoUN5rT5DHK6tEVG/moI1xhjj1GaUhWKfImjYko8//pjRTdlJi9NsOnfunN56663Url27mBqVrmdDpDmls0YjHeU92MMibbLYQWPyfoHCP1cLLEKcI6n9g0YvsY/b+qJIV+yS4VY/lgEDBjC9QFc1uuLBiURHTSlNHVOX53qvYIwxxhilNSPR2aLcBoV/NDmjzUNofdmyZQQxFLiINi2ct/4oXdqxY8d0yCGHpHnz5m2Chs1NAgx5LV5++WUNba1oEdZjiOHc+hBFZ5UyjefVY34M5P+l6KwCzQMPPDDNmTMHCZC8kOWYxQ4cY4wx5peyOHKsxM8//5ydsq5du1J6wzFFx3IjwHPPPafgAlsUUJcNkrNXb/uoc+vx2LFj8/io9u3b1zmCtgkxd+7cHEbVogN1a8bQLyjqVV84nyJe/BDijLPoIHbv3h09NIWTlcpkxhljNhSqVmpzvaOgjDHGGNkeOWeqO2vRokVq27ZtGj58uBrQsCk4R0TVeE1VfTP2C441dKQPmzZx4sREIGXTwRE0GgKKa6+9lqLHqHMWh5znDeQEcbyRW6CJ8qHJRu6fQ8hx1K2bD1rww+Dqhh8aPybq2uqDMcYYc9ZZZ+UC/UmTJqWRI0dmO/TTTz9pvmZNieU/cQLPmjVr+Cx8tjpH0DZucHKKPn364JyxGLQIYs0Zj3WFke+rc7IxiMK0XNUgEEhLM/psOGeaVMBtuWHgt2KMMcYwU5MSm1GjRskO4Zw1iv2TXVPWiMcEINBdQxcU220HbSPmiy++KBjMesYZZ8RJ+0ozVqQz6WyJ3nyNifVmKtIkOkaYmSsIHEhF+djkYNari8YYY4yRfBMyGrFJrbGQrJUkqNikR0qjAioL2PBNbgTXpjQEHb0zSVxAnLyvtKGQwjL72GqNomL6PHEfn5fPF4fRgu4bY4wxDWF/ZP+iLmdjIFmrci0aNm78+PHpnHPOSUOGDHEEbWNjxowZBYr9rVq1knOmyJnCqupeiU5SnH3ZaCKCah6Iys76fLHLRZ+bzRhjjKlHBqccwZKNaTT7x3sqxVnWCiWadtVVV6VZs2YVdtA2IpYuXVpsvfXWSFfwJccOTXWoaIHEDskoYcFto+jU4JBFp0sOon44uqqJHaZqcPgNGGOMMdhC6q6xkdgT7B63jVZCE9OqsWHguuuuS7169copzl122YV0J41zhR20jYQXX3yR8Ki+eMlcZGcoOmvM40RJWV2d0RlqDPS+Mbyr8ReaDxo12uQ46nMaY4wxvzWCpak5bLr4Z0OTs9YoYiY7uGrVqizQftlll9Esl2vHgdu3337bMhsbA9OmTSumTJmStttuOy2Cqg7Rjz/+mPbcc8884uLUU0/VLDBF0SQMm2qJnEU1AsR5aeXnlJWXibQZY4wx9QkQ6LZc7lNrouDtwoULmSSAiK4cNz4PkwXYn4V1L7nkkjRo0KA6O2jNlFdeeaVgrhdFhVpgcrgI5XK1IB2xU045hdy2FkgeNfHss8+mDh06KOybQI0E8Vza9+sYY4wxngfKbZxOAN9//30WyL3zzjtVtsMxvQ57nMXaW7ZsSWaMge5M2KlzirOZsXbt2uLd' $Speedometer &= 'd99NgwcPjs5ZVFRW2jC99NJLdY888ogKE/Mtchz77LNPevjhh3mOFlJVR0zNBdUxxhhjHKGLGSkh+/z+++/nudi33367nDjZY2xw3rdy5co0dOjQ/PiII44gwJJtvR20ZgYpyttuuy0vCG0RpRLXOXGo9Rcqkoxdk9999106/fTT03nnnUeBYlxoErHV8Nh8vxJjjDHGqCu0HBWDJ554InXp0iV9+OGHatyL2qDZEROzZ8/O80Fh3LhxaebMmW4SaE48//zzBZEzFJDVtiu4H7s2Bw4cmL98OVqbbbZZfG7e7rrrLsT7chOBkGis7vO86hhjjDEmirADEbF+/fql448/nmPqGo02uKpG6IknnphWr16d7fWwYcPSCy+8UFiotulD1KtYF/JMffv2raovxheuYv/LL788vfHGGywMffF0q1Qdkv7JJ58w2T9H5vr375/3q6AyapIFjDHGGBOCIyoTevLJJ3OABHstOKZUaESPZWuZD3rYYYelJUuWILtBRC3b/q222qrODloThvDn9OnTJUERna040gmPO91www1RbwzPvkJBWcel5E8zwdVXX51fv+2225aGq5cxxhhjTGzMO/LIIynyl8PFfo5LlUA2WbIbcZ+a9oiiScCdYAu1aTh8TnE25dTmpZdemjbffPPoMCmkGgVnSVuWhWljWrNCDFasC6kikpclOWgs4JjSo8YYY4ypPmtz+fLladddd5VzJrucnS7Q1ACNXlR9Nw4ZG/sIjGCDJ0yYELtAGQPFeQvLbDQ90DErnnnmmXTrrbdWSGGwAFR4GGdbIl5LNEyLQZSHp4tyTpzFc+ihh6ZHH300bbHFFqkCY4wxxmAn0RjVtJxyZqvqYwmxCyYKPPXUU2nLLbfMxyDqtk2cODH16NEDe1znCFoTgk6OyZMna7h5EuVBr3FI+pVXXpk9+nbt2uVFEWvJtAmOl4e34tGT6txjjz0QuK3aUswm4kJjkWp0k57fVDHGGGOwWdjYWAokYkAEFBVbs2ZN6tmzZzrppJMUEdMWxddjxootBkVwuIiOIYmVWrdurYAKNeOxMxTxWhxBpzibEvPnzy/IPcu5EuXFo+Nq3WUj3Praa6/RRRLHXPDc2KEZF41SpVL8z85Zp06d0uOPPx6dQr2mquOGE6nRTUrBNkWMMcYY1X5FGYzoZLGvPOf6wQcfzDb2zTffjHaU5+k5SnPGfUp15n37778/o52Ypa0aNI4pbRptff585557bvYJnOJsAhTrmDNnDtEzfWlVR0cILaY4vkn7UC+mhg39M6FFBTp/HIkBLVq00KwyxlAQzVMIVotV76X31vvLaQwLu+lhjDHGRJsalREUeJDzRqTtwgsvTHfffTf7JKEhm1gRfROyqzrPsccem2u9ITpncVa2zim7DMzvPPzwwzlW5wja78iMGTP4MsrOWdU5lvLeYyNAjKghSItwbdeuXePr5eXrKiE6aRxnXpgWCylPJu4zJkoOF8fkCMaGAk0zaNIpTmOMMUZpxZjGlN1TRor7H3zwATaUgAePcarknMUMk+wqW3Sy8v2ddtopvfPOO2Sl2F/VOYuZKojlQmPGjGEKkFOcvyN8gQXjmLbZZptYZJi3SPT0BQtGKc2YGqVDBG2V4447TueK3Z4VqVLti8fIuZ9wwgm0/aLXwmu1wDmu9uGoqJz3NUWMMcYYbFQ56CG7KAdrypQpaffdd0+ffvqpnK+yDVaQgi1G0mQHsb0MS2eygIIn3GKvK5wziGMY9ZgMFlqo+Ah20H4nUPY/++yz5fzoi1tfgWPV1GbsBtFCxHNfunQpBYlaJLEtuKLDRI8VWePzoMdGcSRXFDovqdDo9Ol92ZoixhhjjFT+y81zagTo3r17uvjiiyVGGzNOIjpzqmeTPcwSVjfffHN67LHHUps2bcqBFWxnhXMme6v9GsEI6KRRu9b42EFjdldBx4a+HLzr2B1SRloq8tK1cLRAojit2GuvvbgSoPtEx6TREiNg2qc6' $Speedometer &= 'sriwmC2WnbRp06ZxPC9CofPwGThHU8QYY4yRrZRou2wYshc777xzDmiAMlO6D7HWmk1RNKkh7LvvvjhTZJ0UcJFtlN3Fdiodyut4fYVER7TtHB87diwTCwo7aI08zonODkKpwbn6xZqzCMeV1iwPZNViUBiWiFvLli3TrFmzGCXBYtPC0cLQ+0dPni2+Vx60Pnz48OzoffPNN1EYN2jCNE2MMcYYIlgq3sdZwj4OGTIkHXPMMUTQ1HlJFAu7h+PFfb0m2uOYtmRkE9mwXHcm2F9Noop9CorIhkdVBpUuCSS0tt9+++wzuIuz9mgKQHHPPffoS5ZXnWoNchq9e/dOq1at0mgoblkU5U7MisWoY61atUoPPfQQHSYx0lbuGC13ecaZn/G+PgOviwu1areN0PvIqeS+Pn/UfBPx79JrRHht/DurvmfzxBhjTFTtj7ZQ9kTE4IWctjipR+Oe1s3NZLY1Y58aRMVAtrBsi9h/wQUXpNNOO63OEbQas3jx4uLkk0/mHz7qoTTKqKW2bdum9957j/Zh3q/CYYkyGsCt9uv+Dz/8kFuHr7jiinJHKVvF64SuGPQ3l2rpYrdpVY0anqv348eh8LHqAeJ7lCODHBfx/NzGsVg6v16nx80bY4wxslVTp05FqSA7Z0IZqPLFfTm4wHHsDxMBVq5cmfr165caith8J7slyY4BAwZk38HD0msMrbcjR46MumRyMhqlSJI5nzfddFM66qijUv/+/QntygmKnrs+kwoXY3g2P540aVIaPHhw6tChgyJlVWvYuP3yyy/Tt99+q7w/jqKOcTWSX68OUfj66691hZJ23HFHzhm1Zwg9y4GqcBI1F43FTgcqoWyFr9mvULccREUQ9R4c69y5cxJy4tiaJ8YYY5RhWb16tVKXshkVQRLZZ70Ouyn7hTbamWeeGbIsDUM5fRo/NyK3NP7tvffedtBqBP/ABeOZqtWRcb/W8L5aiH369EkrVqxIBx98MOOi5AAp7chtjHCpeFGLHAcN5yzqqcW/C6kP8vIMhMVRUgSsQi8marXhlCGaS5ROjQejR4+m7o2rHuXoFQauEAVkHz8exmoMGzZMHTFseq5+kDGypv08B+eP+4ST07hx43JdgRy4ZocxxpjYsckMa+qyaYBTpidqe1YNVlCHjWzG7Nmz02677RbLcRqsBEbvCWX7y30yX7fccktx9NFH17kGrQbD0HFYGIaqL100phI/TouKEPWeeOYaAhsdn7hYYy1Yt27d0HnhPBV1Z0C0rGPHjiyq6PTFlGGMinGM96oYxxGbJ5hjRjcp+6RnE5sZcMiojYO1a9fKwdNxOWt6rGJMOYr6t4jtzziLedRH+/btiarlczY7jDHGRKeL4ASyGgQFyp2Uek6Uv6CsB1F5bFOsUVONGLakoT5f1XprbuH666/HUWzoYequQWOcEy2zOApxMUTHp9bEhRQ1XpjjScSLrlI+j5yz6LhwH8cIUd2nn346tiLHrk5kPZjryd+p86v4UYtbm6JWbHKOaEJQCjM6UTQl0FzBD0vvp+hYnpN233338T5c6eRwdAxfRwkToSgcKMLGJmdR6U7qBfm3YV+zxxhj3CSAk8O0nLr4/7/KZyQnhe1AMHbevHlE3LJdUbYoblJHqCdVM0ugQAe3I0aMQBbEXZwNCE5FwYI44IADqnYPxmkAtSS+pxaC3pcFxgIgEkVnCsfjlYIgcrbffvtVROMEWjDor7HQtchUE8bGIueqhfeKs89ivl/OH6lOziNHjfMsWrSI8+u5ed/cuXPToEGD4tB2Rdp0X7e6j4Bvrk2L0xj0+pjy1L/RAw88kNaFllPzxRhjjAIGQLH/ggULKhT+sQE9evRAgyztsMMOMZASs0tyrBr6s63v3Ng76ujI6tQ5glZ/WAA4ZxXdiNBYzhnoPRQNi9MI5Dwh/8EMMAr0y63G5MBxzlTDJecmaryoVkxOoIT8WHhclRCB4zGvJYXIefVYUTb01nC8OB47N3nu' $Speedometer &= 'vffeG8PBef/AgQPl5PFYzqf+JlSddZWjz0ukjr+fUDHHeB5b/FEoSpcjacuWLUvNE2OMMf/P3pkA21Wkdbzvuy8kLI4KsriDiiiLGypl1YgUayLKJrKJIYAsCjPDYsCwTMCwIyAIEQKKg0KJKOhIjShoyRJUDChGIQrUgIAkxBFwnBCSvHc8vy5/VV91Xd67r5Lc+8b09+q8e+85p8/ps3T3v7/l/wnAGBcYJxD4QQFgTsoRxqBHH300vfDCC4IzNWRaWAw4U4mxSTLpmMEgRnE6ZrkOgdYDNoZNIBWgPf30083pp5+ekEgm6yISV+I2pV8ajnXtLs14+298rDX1NXlJYxvyuqiBLf3fIiDR5AkgOeyww9wnJ4+96aabSl+tMl9ZNGOqQQNoYaLEFJlf+pUrV+bl7bffJgAgR22+8847adWqVdlEet1112UwZ5J2zylYi34CZGOwgdDo9E8zfQcv87x589Kxxx6bli5dmpcbb7wxXXXVVWnBggWk9kBryEwqa+b0gSuT1z733HNp2FKlSpUahSiLvRLNa653v7KcUpZz8Be4OAb1kpKAtQQZ5b6xf46+0Eoka0cmAzzWu7xGt8XjlO5EJaUFE3QUEoxnMgzgKw7LgaKzvgS0fsYAAcpvrHgM6+en54k+1RdccEHGFjWKcyMFrhUG//gylU6JkaLCiEHVrPxW2zWZtN5aaXxkPHU2NKmzNSCDt2ssNd1OmjHOC9+dNBWGjYwXFV+z66+/Pl1zzTXpoYcemlTLx/YPPvggNg7t9oA+tHL5e3wBI0Gt+69ZswZNGwBObZgNGIoQSPsyw/KKFSuyRs0ghrLBXHzxxemKK66wUXltiQT10fnS9ZyXY+MvSBmzKFBXZlTDlipVqlQ/KscExwf9pvjNhJcoxQcffDBbDlavXp2j6CMAmjt3bjr++OOZvFI+8k8axS6IgmnfgKto3uMzOslbnoXz5+PssssuWjIiRyUWidzPe57YFyuvvPIK65zwcwyCv7B8UC/zUuftO+20ExN674vjQc9gPCWSxJOmadGiRYw53BvHIq1bXO+0efaaQNHscR8qQNu4wIAGmokYRSj4ihxcAgpBkmJC1v6laf86qNHSzC9/mLLM6qQGJWNnajnLNMdedNFFpHlipmGD6jkjicjf67JBA3IuvfRS7OZEd+bUFXY0Nn6FdTjlw52GBL8Ajks0LA2SeyOHGt+tsx1IBltHH310GbHKc7Bz6JXhgBypEUwbsJDLDEuqVKlSRTCk9kfQ4zYsHlgIBCNYKWIfptUBv6pnnnkmA7TSQoHce++99NcZ2MkriZSAzONJU2F9AIfUcdttt+U3PtgZWLm/fWl0gl++fDn5nuH5YmLNOTivx4+ZaeKEXJCmCwtpm3Iw3s4774yfscFeALg45sRMNpTFkhLJz/OiRLA2bKGujnNnnnlmpt1on2OnBglM3dmvefLJJ0HmJYFrJEZ1W8msr+gz1ReKX8tLlxtwN6kg7uYG0IKttvysyW3gsQH0lQLJhhZfZBooM68YaWmyWICT2QRsIHY2lsckqubMa7chso0GT13gb6NBR3AWAw/eeOMNwGA8RpwFWucIlqHywMzqTE+QTN3t8AYuVapUqeL4YD8ZeSHvvvtufITZJq+k/rP0rfZlLGq3spaqNE2iULj55pujuTTSHanNMptL9EO2Lqx3oq/2jMkydRRgxok3E24CwhgXAHX2yQIy6+KE3OtzjPCc5p9Wo5jZ9++5556klAqGCN6UcuLub6992BLH5lZwO4L2invQqT5oU5BHHnkkzwQEY/FlV2sUOcYkh42gwUboyziZYDTsjLT/17XnW9vkJa1vwVV3tJ+bVHKaybrfy29tIjs6ICf+FjSh/bKB6ZMQGwTfzRHqOhb9wjgWdncaqseLDUl6jWgyVvPm8fiM1+nz8Z7jD6fKPy+x3LCkSpUqVbS8xOh7XGgefvjhnJ0mOrpLOVRGLWrhiGZMRD5MwBnf7YudGNO3' $Speedometer &= '8j1yW7LevtKgL88jkNQcCQ3Sq6++aro/ymAlwUWFMYZyACW+s73MTlNSULDde1L6oQn+sqLg5JNP9rdlIwDL16DpsBwDHXstM2yJoFxAiv80GtH+pQI0/AAaiE15YY348AUL2jIJbG04cX3U8PTNVNxt1qdx7kZ7iM6MbkpbdfP38Q7+aev7UqHHdE4I1+AMqxTrVQI8/MMQoywRNGd2Ks6A/O2i+txOCBF0sQ7fMVI/IQYBUMaynIN66ruw3XbblQSECbHhe9+th1GmJWecAHNYUqVKlSoRPOg6QlQ9WU8EL9IRxTyOAjo1V/ST9stRQ3XWWWcJAEy/Z3nK4tNGn8pvNF2YEPmN+wvjhICNfXMdBEJaTK699lrBXEJQYJx99tls15LCNhbHCK0jHLuM9qcOasFUdFh/FQDZZcV13reS0UCA6Db7fLc5xgxbtGQJ1A3AQyEC5qgArU+BSI4Xjwcur1fUxsSGQ4QngAZVrECgABR9ZxnYMNaktG68RTUpdde8m0bXrE7N1mxo0kdNfxws0ZzpOusbJM4qSls9SWR14pQqw2u38fSMXFX9rj+YAE8tHo76+EZQJxYyFugbZx1VkUMwqA9FVAurKSuTpgvsDjroIGeLnNt7YR2GIVWqVKni+CC3Jo7i9FGCGvsp/L0g2CZACuZ5+lPAHH2ZPrhquvI2NV2xr9X3WSvEgQcemPbYY4+cf/nWW2/Nn4cccgjBBpkfcv/992dhggsANCAsTp4ZC2KUJWmTBGKODzHwQW0fINBrZF8m0lqd8n477LADn3HMZB9NnbimCBqj35yaOrk5y9zYEtaGAIvhi+OigJIFmiky7Uws1QdNJv0GezqqRx/yx4GaZ599lpfam05KIdTVmSAvghZ9DyaVr6TUzGyXte+mkUt/PaWRThq75rzUzNoxddel1Jkk3iA6Q5aghs9+hChI8mF63arKaVx0EjZQl1KjyG9Alg0qAiT51ABerIPd+aSTTqJ8NBlTngYHrQeM0T195WJkqA2T58b+lLUxOxOkERMhVaVKlSrDNHFBSbTbbrvRH6r9MYMK2VZYRzRi3v/FF1+ERcC+zr6MPpIoeQEN/JfZhy32z8pLL71ETmL27Tk+lETjBHkBGtBe2e9TFn9ggRZlsIZgQeKcAjWF7ZzzvffeoyxACaBmVD3WE85JuibqmsdSJEZ4aiE57rjjuC8evySBjfXXtBp9wsP4N3yxfpi2yes9e/ZswDjUIChGwBATVLRGcZI+IkfBxBc32s5jQ7vkkkuiDxXgDjMeicyZ+ejL1ZMBWYncYOu2bTVDTTeN/Nu7KX1ucRpvKS+6y1ek5ncWpw+/Zfu0DTOokW7qtH8zPhzDYS0lfAvbj7FOk7qd0RgVFIFN3zO8Aw44IC1ZssQyasXIxs8LxWyHxRkAZcqIHpxXIfalnOpvnfhjIAPcZmjVcg5OOxUb1I477ui9KT9LP4Oo4dPEKtiL0U+pSpUqVYZp4nIiScQjaX/06cKScMopp0DybR9oCj1NjFpzSv5KJbq3AIjoc+G/xLRJec2jUCnpB8U21kHnIXgjgjKPbbvuuqugqLSWGFRQ5j8GPHJ86J3Q2sFNGakzrKPjJiAT0MYYwJipdkztWhkU5rV/HP+Y+8XvmxScee1q6cpAQLfJ/MC6Ekxyb+Dx5Brx4eM+AcLx80NhUQHaBCmdACgxVUOM0ixfUlTGy5Ytyy+46xBCoOFmOfLIIyFtzbktEY8bwR/fLTszteW//H5a+z17p+b4n0vd3/v9lJY+ljbssXva5urPpnTOOYlaNC1I+2jrGWmERjzWJP7Wy5K2EcLMjsgZNVo2DvhrMB3us88+XEMJLsvvWYM4Z84cMjAwG4xgT5VzbNRRE+a9oRzPg5lmSavBIgFgdDClsTuDVNXuPvkZDUuqVKlSxT5s9913p3+iT4WrEs1SjpK85ZZbIum4oMq+UwuE20seMvYVAAnG0MBld53XXnstj1UIJlS1Yh6HPhYT' $Speedometer &= 'Jq4lBFoBLgCLAQiWVpkYfBU1aCgpcP0B/PVMKUhZgRVaOfpyQMrVV18dx0Z96XK9hi1lvUuTpeAsPhMjZH1eaCTPO+886KoiwwJ0GwR4QLOSMUjvFFDVBy3bgU844YSYHqnMZym4yL/vuusuUjZkMOb+iOkdiARFi4bqGZWujcsXm88Y/jy++oO0Zub27fexNHrXr6WxN19JY4fMTjPWtY3o/Pkp3fiFtOE/vpTWp7axrmm1Uu3nyGg3dT9qZ1bNRmuI9G+IDqlG50B863WrmZrQAVbi2Bg8Ef35onYLYX1ZnkZuxwXRLi84ES9PPfVUev755wGArM+ZBS677DKenf4aHlcH1exAOx2kSpUqNVgAYAKBOIAIywsmPMcZ3UocwAVS9mtqquxzAVRYN9gW80MbHECy8Jdffpky+ms5rqkBU+ODX7ATW/zRso8aEtMGmrHAPl1xvMDaIjiLrP+lc3/UjEEb4vgpsLF+BhEMW6IPdARrpbuNARoCaxQNAFDGJ5QI7ms56KRw+zniiCPIlV01aEqRJLwBwTKbiaZIXxJZ6SXME6hgh0djxkO48MILc24wy/ki33777ZhNIY0lxUM+hxJf/JFlS9M2n3sgjf30Mak5+cjU2f7rUvfz96X0xFOpc+6CNPbLs9uXd2bqjo3naM91nRYsNinNAJytz6GeGyX40NlwaRR2FAZD3HnnnUbmWO+kxKhKNG2YLg0wEJBG6gtf5jvuuAO/PX0ToqmU3zm5+uOPP25DNhAiH9v9ECOEBH2Rk40yPKfpIFWqVKmJvnHCx48M8BStCpEPLDq4R/AlcS2+S6Q5QgMDuCoJWQUT9OWYUNmHSbNAiroA2LQ2SBUlZxnf0fDB1YU51j5YMy37KYH2A9OoE3D7dOsSI/8tH4lzoyuLvGnTisNMUBalzCgkdQn3iGcEJvC6fMayDkCLwtjqMz7mmGMyFtl77707VYOGBId/fAB0LCypKQQFNqASaOy1115EfwJMMPFZxpc9I+SFCxcCFHK6oxiB6Mua3no3rf+zv07dM89KzQGHp+5bbyb0ZOmgOSn9w7LUXTuewVnqjuYAghnt71H80LZutVJjG/88Y/5NZ2o2fD5RkbOA8tFecc9gvuaTXJesYyGilXsVywuaiByKPGmo2yWw9T64HdCm/4WzFuk9YkSpQM1Ow44sOr5y3mFKlSpVqqhN0uy35557OqDHQDTJVwFWWmei2S+7nUAFRV+JG0jpasL6GCmJBYcxiGNorWC9IC1mI/A8RtFD1o4JLlpJ8DOjjJoiy2s5Yd/SHaa0RsWxRooPtXsCN0HjNBDHx6hNK82ebidDAEESgjOW6M9OcACBAoBrTaR8kh2CMbZq0IKQWLwBuZYsvz4Q18f0EjE9RozU5AZz84mEhFJCe77IGRCBpg3NEc6CpLYQTHypfVg7jG+X0sLPpvE2i8HY9x2WZlw+N71/zvw0q/U5mzUympoWnOWajLZO9yP4nTWp+agFKls1adYmmCHoF8E1ApqoOwuNze8TCaAq5nrzPsqRRmO34fqSE6Vz//338zvmbSvzfsZOyOhMn0/smFTb+5vIVAM2hiJVqlSp4qS0dPbnd5k/UuG3Evs5QBAaOI6DOZFoStZH8u7IRQbbP5o0Fiexgj/6WnNhlsnJ5RIjXSDaILe7b6yjpLiY7KL7ip9l1KXixNysCXFc5ZOxgfF02BJTTSnRl9wgQ6xkmJS9xkjSi5WOa8HEHYCtx5VJgahOtWhVg4Y/EwCtdHpXXK9EfhiWEjxoEsQZEBUmUY/6BSiwMuOESVACPlXI146vT2nuSalZ/mQaPXZO6rz3ekq/sih94lcXppZXOqWZM9J4M57WjY+lhnps+L8GO3OrNLM7Y5PMEB544AHYmwFFpcMpYMfFmRxACVDGbEvwJs2F2i650fADQ/3trEtwhekUEkQAIedzBkl5qT3Yz3OWrNL5d1TRewxD0i+//PK8vUqVKlWGTbHghDPmd0bKiHPd' $Speedometer &= 'Q6KpT2oOyuIjxj4SepvZRTJZJ8mkEoLrjMAtwMN9991HSij8e7EsCM6omxPsSADuRFdy3MjgXyoqKIcSgvUlD2g5lkYAI5+Z54wKAQLXppUGNPqPG3EKRcZRRx2FggZ3J7Vlsh0AyLLl6bHHHuN7jAT1OFqDUCaQBrHyoLXCjWgIKwYscaMi+3IJ1nwwkQgvJsD1MzZGZyCE1QLWTN/hA/FBHnrooenmW29I39lG+Gy1NqUOZswv/EnacMmiNPr5P0ptKGhqWjX1/3z9J9KssfE04/0NLaKblda1u41+ZW0aaTVsaaS7SXh6zMdJcAPAi2spQWt5X2K6JRq8Dq3M0nCOROUbZx7mXIvnhZ4DfwfObWdjHrp4jhI8R0JGOxeOA7cM/n90VsOWKlWqVBF0RQf9sj+LoAhAtXjxYvYrt5Mbk8k0gAuFQKSVEEzgUoNFBDOo41Ice0oAlc1rhx9+OMECmkDZJn9b7s8RzHNEo3IOxgi0eYJFyhv0QLniXFFzaB8PVxvBBaa4iuAQTjZoSVg3LXjs4n0EjBLEhmVIgOUzMGIW/3MYHSJlCotm7jiOeh78rlHioEXbkgEa6samXQbx8IngINoG7hMjWPiMZlQICmGQRtNUqlXZPhCWY4Xz4rsA2aAvlot1jgBJjRfgSkdU0okAgPneZyMwDYoqec6t5mxSB1waBJ0S5yvTRE1TqVKlSpVe5kV8lBijXKd5lD4WvzA0NgQaoA1jn2j1cHIL0wBgqqTK6DnRhhwcDks1djGIjWhT+SkBZZrp9HeTpBxNGMfBcqTE+pegDRMrVhRSRxnlr5WFfbgHZD8YhGgejnVknUA6mqIxvS5YsABLWcnJJgsBwI3xj3L9BiH4fDB1whW6xQI07MQNaZpA/L44g0DgqECZFeBYH9MiITLpo9a94YYbABysGwSALBtRWW9f1I9t3HHfQvq5vyWvTq+6TXp/y3RbkVdnukuVKlUqSCsn7LidSLvhdvpiNGP4NL3++utwchpFqBWD/bJG64knnlDb5faERC2VdBa33XZbBhVmYkG0DgFEoAVhf4IEAGiFFcWJNGALEyy5RqmLuT5lBnAyj/83WRBw85EpQaCiORhfbhgQOMdAxmclaPgigEPLiHUJhgHrGXnrIJ3lmrjn+m9Ppe48B+4Z1j0YIsiO09kSgwRA+eQkG9QA7guAuploR9S6nJ/vbpePhgdDY6BugwJoZYRK/B0bdFmm9GMrwFvfMuE1WqeJJIape6/L65nOUqVKleqjplbKfJZqlGLWlFNPPRVuLcaHbG1ByYGbTOjrBDzwdAKWGPixaJhJQF8o1sNDhnM/IAxQ5zmN8Cw1eygOMHdiYdG6Ewla0YixTZNumSMzphDUlMp+MaOMgBKi90H03daNulAv72XMFITGzMw37q+2kdyqENMT9KZ1jONEk2g/GlR54GCGgBEBgLbFRXHi1NegORuk6Uu2YWdAPAAoKkDisD3D+uwLgkrXBjsoiQ0wgsrYoPhU3C+UnRD0TUFsqGUDmrSM5yqjhKazVKlSpYpmNZ3w5RuzT47+zgCkGKSG1ob1kVtM6wwixcaqVasoo8mS7+bGZF80XQITTamANOqDZcdtLNkvbN68ebrhRKd5FscEygEUvYYyqpW6cS6PEQlqWY/z/UAm2J7XJO18N1E8rAv4kRMty37R8gWgPffccwFvBrp5fR6nr7pHzalyxhlnYGlrWqVOZ0syceKI3uB8GUKcB61CLf0O8E3DR438afCnaA9Xq2aj3VwSAc5E+3wckCvLxcY8FYBV8uRMGWAq0SF1ukuVKlWq6Diu5okgAbRRamskCSciHuf0GMh2/vnn45COT5eaG6Mh9QnWWpSXCIYQz+k4FUlXTzzxxFyPqFW68sorc+Cb5RS+u180/UUakWiNMdoxUiSpScLVh0Avics3twi6oo84JL1gBcRrsY6w//Mc0EaqSfSa+3SvmcxdCIoTMjpsMQCNWUTDy2D4bnxxNrP0' $Speedometer &= 'igKNDZNPZk2opN1/GFq0EuCUodITaNB6griN0J55nin7b7B81Zo4q1SpUjMO4O+03377SVyrGRAOTfI6+ltAwGBO+js0X26LfaO/y+/28XmRokMz3/z589EOxfHI+uEjRwo+wZj8mdJ1cLyeROjUTzBmWcGn+xCJf9ppp7HO69+sEu9lBK4rV67ELSmaM8mWwzPArFyOjTGhusfqZxwT6HrfLEMwCPeVYIPOlgDQSI/RkL+RF9CXwgcyIPDj70h05/bSZm2KqUFo+GwcPcFaIWybTONVmkgHHg5ddnjTUapUqVLFcShyg5HkHPMl311v3mj4ssq0hAIfTHKYQQFX0la4T3k+gYRmRs8N3RH5pJcsWcI+pTKDc8l/ljm+Dj74YNZpKpUjTc0d5WIkJPtoMozjRzbraTrdd999iz5980ppdfH+EqQAZiBFF1YuggQKccz2WspAg36ev/erVDagHSVS9/81QBPsNCtWrMhqS236vmQDEAFZ5FtjXS+HdrVtgzLBljMt68XSr/nTsjbiqTSu8hxTDjbwnHH24bqvBqlSpUqN4PRTgOA4Jfk3v5mwG+2n9SX2s35nH8qWWhn3KR348TfTlBetN34vQVo8N+z5AAzzOjOuM85yfupZBDtYHp5MguUAa7jx4JttlCf18dwDvf/U03stFQgmXUjPAb5IwYNagrRez6MfranHoIz1ASwDDrkfnf9l70yAqyjXNPzn3pnBAUQ2WQJRLmpYFRFkkLAjEqhSFEQUZXAZhQKCAoKijAtKUMAFpEDKrUSFUlFmBIESBRGQAky5sAgBlFEWISCLgLmz9eX9q97UV3/FS0gCOX3yPlVd3enTpzmnrfP5/t+azAINg7kjdq0PPS7lFyGELXEPw/Q8LgOEEAKtS9D3LiWpRz2h0R5j7FacaRSQEALiLPRcMzelrBBCiPr16yf1LE50XI7QlZiuSxpdVfoJIbhIs4s3W1JfRgghBMLACBtHyRriRDVEhJLYcIK8QQghWLEFb3tC2AkhhMjOznYZGRkpyeZBQxPYCAmLtmcLjm3SY/lGCIGxORBkFGd2QkVZIoRQ65W+fftiAlKUTAKNkwN8LxNbEcK9jK8Q4qOPPoKNQFNKVqYxH80bx7JCCCFQ4dmwYUM/kitZBBobzUWnOvFSiIUtLZSDJoRAV3SmQtieTQ6UZYhTCCGYapGZmen27dsXJY1AW7Fihe/GTEMbdldWiFMIwd5OYf8/Nu8sK4QQgj0+u3fv7nJycpLHg4bZluFsSIYu7BQBqlRC4YZrSVh2z/fEGyEE2+/AENpO3mwaGf7mKerCPW0E/+bgaGx25iIIbYm9f2h3kh8hBHUH9/aYC8dGjRq5c8XZjB1g6HiUlZVV6DgiGtLDhw+7Rx991Hc9vvTSS+llC+dpcYUddNYPOv3HEiEER9fYBRxDmxjtgrE3qampbs2aNT4fhNe89tprGB8H0YX3c6VLg8q/0THdzy6cN2+ee+uttzjFxI50cQMGDHADBw7k/R1IftsihLALO9oFbIR/45pbbrkFs0qjrl27psS5zQYGuUacuF/YpHgwfvx4N3HiRP9QevToAaEGNyJfD2ZkFT5slveLJ0KILl26ONiiU0YPPRNpML0AwyIPggrpEp07d3Zk7969GGtDzxtFG2fPUoTR8GK4MhaNDvB8yOzZsx36NQKO0ik/Ik0IQY98OMmE46/w+lNPPQVblBLXECdmg0UoS+WXo5Cy26FDh9xLL73EcINbtmyZT8JLT093M2bMgHeNxtaGMLgFw1XjihCCVd379+93BDYA8/ewQJs1axbFGUOX8KhhmDVsC+0ABJ5f4HXo0AF7DJHmaxBnuBb3wXUQbHjd79u0aeMuuOACN3ToUH8doDgrXwihYfn2HLULxBkZNGiQ1zixFWibN2+G0bOhAv/FGZYEGEJ67Ngxfw7w2p9//tmvmi+++GI3evRolLYyBGJDEjxOAiMqhPoM0W40b97cderUyY0aNcrl' $Speedometer &= '5eW5xx57zA0ZMgS/dRpMLNq8mFu3bh29bW7atGkQV35btGgR9r59xxVXXOHfC1555RXviVu6dKlbuHChW7x4sVuyZIl79tlnvb0CzzzzTPC5khkhBLUE+zBaoYZB8kiNQIoEi5jgud+5c2fsigQYGoiYT4aNX5gPgiINq2Ich5WdTOI9ceKEmz59umvQoIHr1q0bDCvDGfY+fh9vhFCfIfyOKdJWrVrl7UGzZs3cE088AaFEg8niIcz29UIO4Lrhw4czn42hCNwX+SIOYMGHHDMTvmTqhPXOYcPrtEnJLdKEEDbvleMo0SLMPfzww16M3XHHHW7u3Llu+fLlLCRyvXv39londgJt5cqV+EIUXvjCNsTpz3/66adu06ZNOPaGskKFCtbNSFjJheRghCN8y4533nnHG1CKu/gihKBgYqiTNgM2oUaNGvS+w4ja5H9rVHEdV73+fTwGWNzhHLxxuBbQ3gAuCvE37RE25r7iOHkRQtDG5Ofnu7fffhsLPj8gffLkyYzywd5ApNGRBI87dEm8PGhcwcJg0kCy1B1/0+OFLw7jR+OI99B4Eju3k5watQDxB6+aX1kfP348xiJNCEExxVAlytghwGA3Vq9ejSa2+NumOFDEYZVr53WG5fEUYDC2tCe4rz8H6JljvhmOeQ+upHGc3AihMXOoFq9Vq5b3sufm5vrffdgpYs6cOQh54hz0C2xSvATa9u3bIyTd2rAlhRiOGcKABy3sQ0QBR/Aeu9GAgoMHD7oJEybggXrBtmHDBhpSr4LByZMnXcIjhOBvH8OIvX2YNGkShZYbM2YMQpDIMYMd4KLO56Zu3LjRG0krrGySr63qrFSpEmwOjrmQ9Me2jQ9DmlxNxwMh5AEjYU9EgmOe5+IMefAoGLrssstQsAjxRe88riu0efbLL79Mjz6KBSDmotgItK+++grVU3wQoZFjEq4NX9LoYiXszzEnhQ8hNLh0N9KIzp8/37Vr186X6q9du9add955/vWKFSsy8c8lLkIIlLDbik7kkyH/FKEG/O6Rk/bAAw/AINLjxdxU5qRxAUeBZb1lCFP46+mZA7ATxAgy3Jv7GEwyEEKETextQSI1BRdyW7ZsgS2BV933Pvziiy/YcxV6xN7HVnFS7Pm+ixRv9erVc9u2bYuPBw0fmA+DpakUanxQderUwWrWKt0wdAEjigcSPjB7b7og2e8IDxpJw0jqQ1gEK2T8B0nwWX5CCLS4wO+ZAgoLNLS8QJ7qiy++6AiazE6ZMoV2g42t3W233RZ622lLaGesR98adFxv89L4Go18gi/whBDW28XomfWgA+SLwYnTsmVLeOPR5otagtfwt04xR52BxRpFHNKsGALF32iwH4tGtcgXiVCKCgFm882sEaSo+vXXX30y3quvvuqNMGDCL1e9eChM3iV8eHRZ2vfY12lwkeuGEn2cS0yEEGiLgVYXY8eOdddffz1DjRRTburUqWib4Q3v7bffjt+0/+2//vrrDtx11122cACbLZ/3vRWPHDnCPmu0B7Zlj7dF77//vuvXr5/31NFIJzZCCIosHrNRNVphvPnmm27mzJlwEnk9YaFOwLW2ryqjdITnKQT79+8P/YL3wfvvw6Pt27dPSWSBBuMWobkkHxRXn/hC3NNw2geAzzBy5EjkkzC8ad/HVh186PZh2ZUy72fPebXbtGnTBDe0Qgg7i9Me87fLc8wzw2uEQox7CjBrdK0Y4/3sUHa7arbeMy42ExchhG3T9fHHHyNFAqkRFG+0J/x9U19YT5t1/hTqSeO1EHXIg2ckEO04evbsmZKoszjR9T/q2LEjwwYMLWBPI2sNrfWw+SS97777zu3evduPUKAytcaVxtaGN4GtBOU9+RkaN24cI3EmhIwrsAIJG1IVYBD52ycUXBRYrKyygi/04vPeNL6EeWfmuhilRwghfvzxR5/A/8YbbyB8GaY5hCkNNurGayngrH1gRM9ei+bXKIhEjixew5hKr4GqVauWkpAC' $Speedometer &= 'DeXwnKlpjSNg7Naeo2iz6hVJe5iFhyICPGjEiQ8cOODFlw1f0FDbygxik4UfeuihmIgzISTQQu8VRRj7mtkEYNgEtsEIZ2vyPrQtob3BZm0J9rZ5LQQhCwis5y5xEUJ8++238Jrh90vnDXPZC10E2rSqcHyk9cAz1ap69equT58+bty4ca5hw4bWlmC0HNp+oUAyMYsEsIKlIaWnKzSQNjzB/mZM8rcPp3LlyngIGPkEbxoqNMOwKa/Fng/ZGmI8TEyd9w82sRFChOKMuaf422CbydKGwEDChlibE3rsQyGHvbUZYe6qLSqIgTgTQqC9V82aNa3nK0yFItQS1B8MddpFIIsUUXSI/FS09YHjCOIMeWe0M5w+AEGYcEUCbPIWVa1a1fXq1ct/SK5EaXC5Lwk//PADFCpKXKGQwxFSoZfOz/DMzs725/h5khIhhBBCXng4djDajWlQhXrWgXUcWagrkFsGb9mwYcMwvahI+bPr169H2BMj5VISyoOGgcUUZ7YRpH0wJQWqFdUYEGoIXZ5//vm4Lzc+WKpi9FEqB+JMCCGEUBUn/79P4QVPOHRBKM5Cr5pNc2jSpIn3ku3Zs8dPDWjVqhWv+0N4j7Zt2yLMmnAhTuRrQJRZdWoLBUpl2DAT9WrXro0cNTxAPEgUArAZLf89lOH7CQMMhSQnQgghhGBIEn1Ymzdvjr8RaWOKUyjObP6ZP3f33Xejj6ovVhw8eDCrM3l9kfXJqSKBxBJo33//fQTvGYeX28ZvVqiVFNw3HB917733+h5qS5YsQSUo/12EQu14Kb8lN0IIIYQqwR955JEwh9SKMea2ussvv9yHQ/Py8tAnDX3MHMG1VtSdDjqobr31Vrd169YoIQQaRzuhez+HDVMk8Usx7FhSKLbojbMhzczMTMz2RJktGsYhqc/2LvHXJB9CCCGEYFU2uOmmm1xaWprtj8ieZ4j2cX6m++abb9yIESMwxYT6BfehjglGRRWNSy65BPdOmDYbDG+ykgpflFUUYSuNEgs0PmA7x9NWdqWmpmI8jD8GrMJIToQQQghhNQcni6CnKrUCUqGysrIwAQCCzPY7DKu47X2K6kGjs4giLSGqODF0NDpVsYD5Vn7mpoGNYyGQSkWg2YpQbLb5HJVu2Jgy7J2UXAghhBCCY+GoE9DlHzMyb7jhBu8la926tX8tnBAAbE6aJXytqOzbt88tWLAATWxTyirEyfAmOuhCnLFhLEOQ1pOG86XZJykcgMzXGGvmZ8BxEoszIYQQQnDUI7UA+qFhMhEqMa+66io7o9Nfy8JCC/ur2lAnnT2nw6Z31a1bF90myt6DtnDhwghDjK3nqrwhhBBCCLX5QOQQ7T2gi66++uqy86Bt27Ytuvbaa4M+IuULIYQQQggOUQeYYgSNVGYCbePGjQ4CDd6zcooQQgghJM5sc350koBAK7s2G8g7s0NGyzNCCCGEUKiToKl+WQg0DDGPMJjUjlYqjwghhBBCsIE+q0V79uzptdI5F2gbNmxwGRkZ7MzryitCCCGEUIiT2EkFmM15rgUaZlzZvmflNcQphBBCCMEWX2zNwXZj53aSwG+//RZBGcKNxzlX5RUhhBBCKLzJPmsEYg2RxmPHjkVVqlRJOScetPXr1/vmtNatF3bt54e1sJjAHhNcG1eEEEIIoXFT1DbUR127dnU5OTnnxIPGAgGH8U7BmAQqRnzIsPN/0lZ6CiGEEEJQ44Szyk+cOHHuBFq1atU4HJ2KkSIMRQMUZnaCPM75rTA4TiHGCCGEEEJFAmFUEDM5z02RwKZNmyKGNzmvioIMf/PYuPs4yBxCLQyBcn5nUgg0IYQQQgjqIdChQwe3efPm6KwKNE4PuOaaa+gtC0tLMYcKh/gw7siRI1accRyUv47CjRPl44oQQgghJMi4MbWLkcUGDRq4Xbt2nf0QJwTYqWoER/ABGOoE2KMFB0Rcfn6+u/LKK/04qG7duiFZjh4229yWIdBYV4MKIYQQQmFO' $Speedometer &= 'CjRAfVSxYsWzF+Jkew16z7AxZMkPxQ+zbNkyJMXh2FcvTJkyBVWfPnete/fubtq0afDEcWYVPHGxFmdCCCGEkDij44pCjd41aCe02zhrAg1iq3fv3vggDF1y78UWe6J98skn7AViZ3VC4LnPP//cjR492nvWLrzwQte3b183Z84cd+jQIRdXhBBCCKE+aNhbTxrTuDp27Oi+/vrrs+dB27dvn6tVq5b/R8OyUp47efKka9SokWvRogU66HovG8UaryeHDx92H374obvzzjsh1vz7hg4d6hYuXAilab80jxlmtR67ovRRE0IIIYRaYCD9ivqBkcAi92y1mgfv5WQlnKfTimzZssVNnTrVzZw5009eOnr06NkTaFWrVrXqkNBThg/s46z33XefW7dunRd0H3zwgRswYACE3R8KKd4vNzfXzZ4923vpatas6dq1a+cef/xxt2LFChYghKMToE7Dh0+EEEIIIWyvVvQmo/agdim0yT6vsWKO45xYKInzFSpU8OLswIEDPoXrxhtvdLVr13YtW7Z0Y8eOdcOGDfP9Y+vWrevOlBSEHU/H3r17I9y8U6dO4fQAKsewrxm/KEWUr2JYvny5W7BggVu5ciVCnriOvdLC++I8H5R/AL169XKtWrVy99xzj//ytltviBBCCCGEdQ5RqzAaB52BDZiWX9wXmmfP63/55RfvhFq9erV3JO3fvx+v4RorACHo4HzyqV07d+50qampKaXmQWPbjDZt2jgLRRj34XnmpLFSE9MHBg0a5EOYeXl5bu3ate7pp592bdu2tVWgFG32HniQCId6j1qdOnVc/fr1Keqw5wOxCCGEEELY8CMb6VNn+BAle7oSWwRJcXfw4EE3b948N3DgQJeWlgah5UaMGOHeffdd7z2jOLMtxTg8fc2aNRBo0FKlH+JEEj/Cl9bdF3rRcA5Cyjan5bVQkYQeMQi+cePGuVWrVvmY8KJFi1xWVpZr3LixA7aHGuAxzl900UXIbaOA83sSIIQQQgjBFhjUDtQjhTqe4EiCh2z48OHQHMiVh5MJggxRRV7r72fvzfOVK1d2ffr0cc8//7wbP348dBA6XJS+QIPXKiwOIPZDMj/MJu/zWnscgg+OEOZzzz3nFeaePXvc3LlzUeWJf5sqlsrU91YDFGzYQoQQQgghwpQo6BU6j37//XdoC5/Ev2TJEnf//fe7Jk2aeO1x8803u1mzZvmcemBz0OgkojMJPWLRSmzixIlu69atSOOCwPP3a9iwob+mRo0apSfQmH/Wvn17fkF+ufDLooLTTgjg9VatYrPJdn+ocFFU0K9fP/fee++53bt3I8HO91O77rrrvNrt3LlzeG9nEUIIIYSgVmFKFDl+/LhbvHixmzBhgktPT0duOxxFvupyx44dVsPwfbwXBZrXJE8++aT77LPPUhACXbp0qXvwwQdxP38NK0apfVq3bu01VWkVCeAfjEaNGgX33h/mnFnCsU70fmELQ504F7oIbZIdhR6vYUmrFXsUhIUhhBBCCBEWLiKECWcQw5zQFmGBos1BgyCDswqzNeEkQv68rQi1s8lDTUJNgxZikydPdpmZmSmlItDmz58fTZ8+PZZhRCGEEEII6+yh8wiOJ3i+wgkAbOmFzhHoXtGlSxeXkZHhKlWqZCs5eR9XFHjt4MGD0X4spTRCnPhAsRRnQgghhBB2BjiLGgFCmhBijPrVq1fPjRkzBiMrfXHkl19+6SZNmoRZ4tBC9MKFTfSL/O9jX7169RLnoLHbfwQFGUeEEEIIIRiCBHZEJRrpDxkyBJFCn+v+008/uezsbAgyVGGiIAChTza0xXsQ6qTY432L1OaDIg0NbKGtSirQUFGJpLbYt7EQQgghhEKcDHPCa9ajRw/3wgsvoPu/z0fjhADAQgDkp7EvGl9j/jvF12ngdRB8mJIEbVXiIgFUUUYzZsyIZYhTCCGEEAICCwKJnixWZlKEEc7YZMswXkt4znaR4Mzxv0dYWIm54/37' $Speedometer &= '9z+tsPqH0yk+W40ZM4QQQgghKM6wsf8qBZcddk5xZiswKdTCFmMsGChqiJWdKeCVK7kHLScnJxo5cqRRiPFECCGEEKrgDL1g0DcQa7wm7J0WYK874z6sCHHi38RszmbNmqUUOwctNzc3OnUDDvx0cUQIIYQQKhLAKEpbUUmPGsUZzwHs6fXCawxlkvCaogJHF96Hlh3QWMX1oGE2ZoSRBXD3nTlCCCGEECL0zGG8FCYQ9OzZM6U4HjSMQYA4K0EFpxBCCCGEPHhWqGECAT16xRJoFStWNLHaEiCEEEIIoRYfDLGiYW2xBBoS2aK0tDSWprriI4QQQgghD5otPGjQoIHXWmcs0LZv345masFw9DNFCCGEEEKwTQcFWosWLaC1ztyDtmPHDte0adNA/RUHIYQQQgiBik+GPNPT092uXbvOXKAdPXrUz6FiU7XiI4QQQgihHDQKNDarzc/PP3OBxgIBNlYrPkIIIYQQykGD08vO5axSpcrfF2h/Y+/8VRWLgTi8LC5b2wu+hm+igqKNiCBY2Fj6HlY+gU8gXAVRsBNBbXwBCy2uuN4/+9vMwgfBnF24zb3NfBCSTGYmybHID8WcLGOhUODfBn8vVkP9GSi++/3+IRFnuYw4F4qSPrlilUkhB7A+asYzYunzTi58kzj6UW7WhJ12Mg/PhDmIi/MzJgkfxpOc/1Ld8WV7gP+n4TiO4zgO53GicTjTOeshfhF7sVjElI1dVBuX8XisyWQiIyQXxP0gPGSEBSmIEgE2IAZ/+uQB4oL4o62wKavjtsXFNgH9x7UZZice8M3aH+vFL86HD2P4xvPzPIKQYs3J/BDFJT7MzZ7JBfh/LY7jOI7jcD5z5sfE57id64yvViuZ5kJ/PZbEMBwOdTweE1FCbSKqUqmo1+tpNBppvV4rXGobLyBLFJEDH9oUxolL2jH4w6M4YoyamMvlouv1qv1+r81mo3K5rFqtpmazqXq9rvCbsPL5vNnUaDTMZmNqtVoaDAY6nU7abrdaLpfsN1NoAT6LxULT6VS73U6Hw0GdTkfValXha04FFa1cLme1SW6zqVQqqd/vq91uq9vtajabaT6f27yZH/wX4DiO4zhOqmtibZL4wO120/l8VtBcJtD+sHfuLn0lURw/5rVrjME0WsWgYtREXe1C8h+InU1Qwq42IYUEbPwXfIIg2KwWKRUESzuXVFF8EYO7RYRYWGiTgMG8szufA18Yrj9hK23OFy6/ec/csfDDOTP3WKnnihV0cHBgfAMtd5sprcCi8/PzKpNv1err662xsdGvjhLDs7W11W8pVFRUKBhp3l7pPGgpacrywKbFiPGq00N76piDyAdyTZL3cvVHq6ur1tPTQ5gF6uirdv7ITbmwsIB7kvHIs3avHxsbo49/BXh2dtZvura1tSmGl9aTuzUtgSxWSeqYF7Om3lv9mIs883nZ2tqaJRCUu9cSCGtsm5qasv7+fj9gqAj7F6NQKBQKhUJwRH4cTBwjvsh5KY8mQF0yHNlZKgKagOQUmCm/vr5eRrL40bX9/X3b29uz5eVlk1gw0NbU1OTQ1tzcbJ2dndbQ0CDAUDT4PM1vDh8qKwY0FQQpoLvS3l6iT7JEWVdXlyVrmNZFGwCIfpzrUl/KtDY2kLzm93KtY2BgwPtubm76+wgoBZzj4+M2MjKSnyOjv9qQp7/6eVrgVl5eDsz5/CiPtj88POztkxWTA4YFUD5HhUKhUCgUgilK3tqkvCCxjerhj/9/SSC5+AACTZATor6RhhtOQKAJBRrAjMOEYGd3d9eWlpZsdHTUksvQQa2ystKtT729vTYxMYHFCrjTfILCHBoFg/m6yGtOgVxudfMHETk+uSxltRIQKpK9LG+U52OxcYJVftVe7+vP1tYWMOXz6vfw8BA483WfnJwULyPwiLZL7jH1rIk86wXs2EvEHFjlFhcXWd8FwlkoFAqFQiFdICwaakjn/CK24LIlljPa1dTU2Fkqw88p4R/d2dmx' $Speedometer &= 'dEaKQTRZXm9DQ0M2PT0tAqTslOlOeYnyotS/CGW4DLGy4R7F4gbIYYXTCwpgSkGixqA+n6O6uprNY1PkDuU7b0AQkENg+ByKSDuoJv+w3I58ekSARRuVA2AOmnNzc9orS+fFrLu7W22BMVni+GPp+yf8kqcfTw65jC1wZA7lBXJuZTs6OhLoXQCkhUKhUCgUklWsaLRCgFi6DODGnHT+3ba3ty2dR7fJyUkbHBzkCBNeRvqXneXilJsSd11Js5zggYEFBAIhgU5u1dICVab+GktP8fxZOrzvD8rdf1xHTYfnrb293VpaWhzcamtrgRnWIZdlHk4B+HEL3vHxMWWCGWDLN62vr4+QVnzNFyDEZch7MC4byph+hq6qqsrXNDMzIzgC8LBmkfYNzqPVr6ys8D6KZQqMUc/8jCfgol7rF3gKILE0YomjL3NRxtoYT/vNO2CNlCv0nBUKhUKhUEiGIeBrY2MDThKIuSEF5WfP5X3j/31HR4eDW11d3elx/2Pv7FnVCoIwvPlOyEdnAoK3SJE2IHb5BxZ2IjaSLgYDQVDQwlZIZewsBbVIY2elmBQGUocYgqQJNiZRSUi4+c5kZuCFYbwXSXnhvLDs+diz6zmnmJc5u492Z7lc6iR/a66seYCBgrmAsA15c8aCcfLHIYxxFPtMjJeax16vF+r1eshkMrooIRaL6YIFa/xQY85Yu922mT4YN82qtVotzRY2m02dn5bNZkM+n9dPotVqNZRKJZ2/lsvlQq1WC6PRKBSLRTF9+ntWq1XYbrfIeOEZhX6/L2PjRWCRgRgr3S+Xy2K+tGw2G/nnBilIe6qhHA6HodPphHg8jr5xPbJ88lJPuDmLFClSpEiewYm465mZlh8KmViNGOpjIfrxrC7L6kQs98xQ3yfa+1gPHcUlRS2JBRvb/TEv+wz8PTn+2F7hXj17FNu2b7/t35HG/ul0qlO3CoWC+BFNvqRSqcDkBfEdugqTyQ/wAdYL6fZ8PpddSQ6J99rPQROsA2d3gLHYQUiwcSA2GoqDQOGBpBZMBLbtOWnvjwMvIbXtY0/RdijoRzkiFqvh0SCVSoU4y0VsbojNDHHGidjYUTKZBKuM1us18dw6LZPJhAaDAbEZJF4xSd1ulzgjpniNxWJB7IYV54FxLOMNzy2RSBBn43RMjMtZMOJvzYrcAD7E/mbPlMP58Xgs/ck9SJF+pFY0x2w2k2tOPmojUqRIkSKGlsYkIBjAzLJsLcQLtLVoBy/EKcvz9CgsHLNjg0eK8SCcR3sfr3ws9KxU9Gvj3jHy3FM8E4utUK/yP/K+BnJsVdw7xtDYz0kXajQalE6nib+wifewvkViMryJxGbvf6TINShyXtoBUabYsuMwG//YO7OQq64zDJ/MU1tTJa3GkJpi5qQTUXOjCOqFFauIlVyUkAQxiUmMEEJAb0QlQiHS3tRoUiGWIK0k5MJqhQwt5CZzzCwmMTGimdOaeWp7ng3P5mWd8/eYXgQOrA82e5999hr3Onzveb9hKZjeMNklWkznfCg7zXA9KFh0mhGWIv00fYpYtdlq3jxSsV2vJ06cKNJNU2lb/5gxYzqI0RL6gR08eLCzcuXKzqZNm2CvLNuwXePGjYPJYj4yQrSNvJw+fXpn586dBhyIjmW6mIu2HzlPhw8fhs6kLX3TbNPx9KB7kPmBAwd4L839bh43rjXV6pc2pFKlSpUqVbQuKWYSyEh/WS2D3NQfqXtkZ9R56ussawopPidTZH20jViPbfC9jvCUV2/pWmRfU+/5LHV4FgdQX+kGleUdt0J5PtsmejDGPBA3lOPxnoJuJb1VN7drB1/83bt3Y6XCRz1dkRLPqP/dYakdm5Lj8BrxfREcidsW1wPTbODrlGAjK+PAtJcd5ToXU1KoliuBRwlakCMAaX0nCN+w0aNH923LyTDq0nEB0njRgC/yk9G2gMfJBbDxnOOmvICKst3EsfidwThSD9SmC8/x+eJc0LkwjQrlO/39ekyY' $Speedometer &= 'LkZMmD7Lmc8sBsAZPnEbN25s2xteqVKlSpVq5pRA0EXGa4EWgWvdJOadrVu3ChIyFVMLlhYtWoRLEPfUu6aUEhhxDdGAvuMZSInG5Wb9+vXoNZ5r2l+yZAnbP9I+IAZfKcxytAlZIbBLX/AEj5nlAdcgxqAu475jTFyRoJHncEnKfGOUT9erQQCNsdKG/cHvnJRhmBnxGQOIcU/Alzgo2/FwvD7PIegqMUgJPhO80TY5YxnjYIAG4HGSE22q/PHRwkcNdEkyVRzgQJyZaK1k0EqWzM4LUpz0QWJ/8ho2qhywnxMgIY4rJ5JFyPdOumk1WDBMGN9TxhxmuZhWrFghMMV/rWT2esAt9cmuOaf+eOyv4n0BWgJb+8+cgexdTMMtVapUqVKjADmra/jsNfoBf+vFixdnbk51g4ALfYFuAHgBpiAPrMs0TdTB9+gZdIjfZ3otMQBnMhRw5pCFE1CQl7MJrlu6dKn6TQDoeLiHPzf+Wfh2m7Dd4DnIBq6TsFGPCuTa1F1z5sxpnlu7di3BfBIcgyRzmKK7TTrfl91KYFmKz1imJF+Usk7bcg4VGDTKgb3+V5oNHNPxweosX768bRDJBpJORWR1QN2YP7tbRJG4FVQI29YAnEJ86SLN/4sGdjIIUSWzfoLCMqM/AQAcfHZhCMB86Top+lnWS5rY9nKSTSQ7f/58/qlwX+CEYz8/jjQTt6k99u/f35wVn1HKJLy0QzCEktTwggULOl1/Occ6xFKlSpUqNZdWsjPJeuGI3t0uELbL+wIqwRVnrS8cuMYAnpKgQF/AiKljeoAedaC7Ro0aBWhSLyZ4oW5zealvSRlBwF37XDJQmzdvBldQLzozsxGgi9G3EhE5B+pa9J2ghnOrkxcuXNhYwY5EcozMAbvxcG2d9rU0r9oXjpTSYlfesy4lx4VYNwxk1+8dRpSMDBxH9Y3iPHToUJOLI9FeSols0/aLn9eMGTOa7PobNmzAhou/FZQhkY9uT0R+MxF+yaQd8SQnAIPNK5k1z4mcBUiyY5xF1LJX2qC5xmxKP10cHk5w2vDdOSHRuM9mX9J8afJdAWXOb/449Zvj0Mxqu9zjR+RiGl6pUqVKlcqgadJUhwiMyBywfft2dCr3k33SSqQOS0BFhoE0z7E9IRGG5ufkTHsCM5kx9J+kRfpzq5MgXtCVyQQBBKlPYKX5DtYPIkVmLc2Y1EGd+r0nqElTIn1MMGR/SIDfREkOEuvTgtYNEHQOBGel7s2o2JKYyv5lvc5RybSVZAxzLIYykpOcr2CwkRm07plNwjsTJkxIO7LARmozO5/O7j02V8Rz6Ri3b98+GDaTttFJc5+NKLQh0ha5k29s2rRp2WZp/8VPCxpWUKhZkjqgFbHnA3RYLGT0hQ1kz04AJ20waTCDZO4XeME2ApQ0fRJyS79cONjosbOzyJN51AbPD6Bvf/m+DMLYu3cved96Fq4mZ/4NWGZ4pUqVKlWqpNUFQMYuO8uWLcvtEAVTACUBAGf9rFrd143y70yaNClBVDJtmfrKHJ36Z5uEXQAlFsCiI4jUX05cwPaD5gQ1JRe5S2UB1Vu5pWLqvdSJfZmvBIvJQm3ZsgVr0qC9MpMJVH9nvX6Xkn0SxPW7X767PI+U8xUcQIAA4BtMQVotGDUKtXJsMmjYdG3Myh0U5xQBgeCsBA/lILMckZcc5DPLF4E/GwegBD83wBuAhpcpWk/Qg01bSWBT7teZk6uNn0S35DExMCLpzHTy9yVCC8+bN88FmaCIiFDmzrlyAWfbrdm0m9IDYJgguGff0ewD47dfUKC8SNvhB2WZ4ZQqVapUqaI+MXITaxS5MMu8Ze4oQ5JTSADKAYJSR/scrEy6/aDrAH0ZiCbxgU7CIrVt27bOrl27sH5hTsVHjWcgMNDJsGIANvSw1ij6kNYqDkgNtoVU93EWJBmBqo6jnCSQ5lvBoASQTB/XPXpzz549nUFCnWnWBRgRpWlwXslkJnbIz0qRH60ve5Zl' $Speedometer &= '2Q2J5POwd8wzOyaRfF+cgB+ejGc/gKZDfGk//da2EaINQBMRDaJmkTfBCERcANzcLmHu3LkMqsfJ3sz9ueG5LzNtzSw4AI8vJKMxctxGxmiTT+d+wRg+Zy5UQWBSxBnCzBgAVqBnFrp7dSZDaBnoWxa6zqL+WLJt2xhuqVKlSpWaiR49AjjCfFdmBkBf4OvVzcXVWHvGjx+PTmBbQs6638hocU9/Z32tvW4tPsjq1ath6VodNnv27OZasU4EkDZlyhTBVYIYQRSfIXz0SVOHpqlRtg995raOMHzodBK4N0Byx44d3HNLQw7KoMcTHzTPDhJ93jPAEIbPviXgSpYyy3mU4C0BtPuMUz9AbPLkyWAaQKDP9jCCCvhiJIDmS00q7tsEaPahpDYZGANksMla9Q0tduAieZ6dNWuW48mN1AFJ/Fvg+2S0OHp2mifL75o1a1zk9oPvzYFCP9uXOnPmTGzvtKGvmShe1pAfG23xA6KMbepf5vdpau7xdYPVG26pUqVKlSqpsGFWVq1aRZ7OZMDITo9jvAwWOodrmKbcG1ug1TAyY8eOTZ0uEFS/AYgAFfq3UR4yIsFZMnMQG/icu9F3mv0IliPik+dM3aHVS98rXYQYG9GU+tr1sFH6aWtqBax1k7nqViSYoXyTy3TdunXfCFvAZnFWl+dYnEfF+6UplHmYOnUq4BL/enAKfvxpYXP8/QII8lqz68gA7b/snUuLHVUQx5P4fr8mShQSZdSFKEQmUT+AGzfKrEaYwEQXisssMhA/gI4rXcxKUXDrdggSSCABVy4EkSiMkkQXIQgi5J34ONZP+EF13blMsrlw4RT0nL7d53V7+lL/U1Wn/m6bpXIpJ042qinTB5UfIFLzh/kgfDk9555uWy1amhOJg8NnbsJXXnL64YWnNIUFz4WXEiBFf46R4+9okx80iW5dwVQkrt+dtqby8MW1Tt454g8kWwgFoOSGyRsgpk+6dOnSpUsGYhyE0/AZakNKFvZYtkzOqjLXKySgUC/qIszxz9ASQTNo/JlgCUsXuyHxVOENwvpDXDiGBimJGA9LFwAsB8SrA9FPAC5Dggj70ThhagkP9COpqfgueXdmDqkSiHEdAwpWO4Ak8d5uotBThf7eTNS5tsPFiGROccsMppwTsXzE5xNWhVWMZ4EXLMeNKyURrlimArKMb0w3MhagCUByIF1FepPIpFy3ueZkfRWQcc86GZxVi1nmwQTwALioazZk48pE7ZpTBXnUMWBSSxslBz8k5+ZLxg9DF2v+Z+XYshyXplUu/yNZ0QjufC65ZMWAX3vKwVmXLl26dKkZ8bGizc3N/a+XV1ZWtiwtLeUdkIIs2w2MB17Dg6NeRcikgMuQvlz8Mx7XiMcyZRZpH+ifgH/0mAH9pNByg536ivaCQXKccd9riBkPBI96oSQGd76USA1vMmsB/ejKFMzqxaL9ZuL4YgMAV05lYh8zMzNYwrCIWeKyHORQVVLOuAx6N8qBZlnZlWibN3FszMW5trbWgjhcLq3KkzUJrkfG5nBcSri/xo5t3cwPJtcW1+D/km8sAi5boF14OFugVDkt4cls8RLDicUBPyjcWXBnUo/7LV5MuTxpI69mC1TfwvfPPJxD5h6DJ5M2uQ/6ZDzO6cfr1nHMQd06Ptf4HhHL1qZfunTp0qWLOq1yaapb1HeK52FsQA+hL9Bh6Av0GDqjhbVJ/W0JvzS6C25IStqgi9SN9MU5+lJd2cLlCbc0+ofzgQ7lPEBNi40KA27Q1dVVdSV10VtwUMopXblGaVuxxoA/NPKHqnOdM9+T+TDfG+bh5FDCQtgWFhZaGDtapANrEe9NvcJDesMiBqmfx96r+CryxTWw2AgXJ0F4s7OzOZdKzfkxkfizmmdMdMx8tBRVa5l1dCPmvCQKPuoAoFA0YVrVYoWvXd/7wNdsW1G6KwLbibhJHOg8nCef6Q8kPj8/z44Yk9Y6jv5mVh1+p8qo4KplQPskxROJd9kFW1OY' $Speedometer &= 'TK906dKlS09Sqy7LG8c4z3qocl1my5rt5cZEbGfuMRO1G9aTkt7iKarZErhWE9Ub9K6uxCKWdXHW58ZpZy+Zc9Njl9vWsB7HM/+bdbXGYXm6GSYiPXKyKWipq3gkswSMZQlSxn22jWVlaMoCBmPnK67cbEHDN92Cuklkl1nuOSa6gmBspc4nl1yXId969pGv1/uRf61FcH2LAL8WGfpB4APLGGjcFQNoPXbLsJrgYAVA2xapL0bGsn/RsGPGVugWnJ1tcXGRMemnxe4bStE/Y7siYKXhwT1WJ+Sno32LHTSMNbK6mF7p0qVLly7qOUVrTxUtTdbBEoWe0OuCB0gPTcSBjXihIq+a3hqtWVikaMd1vT5a4ryn1WrgdeI+Vi30GNew+PldlpeXrUeZ54j1rlqW/D48A88Huj52tjIn9LLzZj585rhp65bPMcBn1af1mVVr2mYWsvo/HFvfe5br6+sNLJYtaFv5g3mP4MEAA6DT/9g7dxyEYSCIhn+LBI3FEXIUTuCLUPkCVFQucibuAggp/H9+SFmNUtNEeBpvFGldpMjseNarTFnjrlcobVartwlTWcCiYdbatWGK2I+gnZoweVaem4rAxl9QKfA9EqkzFv+/yMjIyMgKW3tFBUsFf6NymfpEzESfsiwbFQshhpMkOjBtODkrOcR/bjEgn5wu2cxuYh28Drz3RVVV33eJoBUxRlPv2Ecb7JJwoSZ59eC1/9nmyXbOmecL6K0N5OswzB8fQmDeaE+bBGjH/bB37ipORVEYzoz3C4pWgk8QbGzTpvMJRCxDiiHPEZs0kkaGeQcbG620sBOLGRgUbUQSEQVRkfHuuL8Dn+zsTRAhFh7XD5uTc9s7hxRnZf3/+hcVCXlHgMq5/p/F8vSjaVS2VJSUZnMrLY7IA12LEGxkyxAGYooOgedLBAKBQCBgkJN/hsY02MJ/E2mM1KnvQBIB0+m0MxgMcveABUsq9qVNCfr6/X7lLcr5Xq/HfKyrjUVzj5SklYpJ9+V+HpyVgaj3WxWKZQhyLIPInJptRQBu83ohxUnkuy8yKrFtFJrP86dCv5UWSTinQyiYLFOirv9/IhAIBAK+A3KKTIoOKQ40IvQjlKLi/RTM/LouZc0sfmuoQj93u10K2ko6bim1ypzJ7oM1oRmdh22ztvFD6lGNjMdiOL4f13GsoSSTNlu5TvWedQ6PpwTSfurxzXM191oMIdWZbEJa8fvyrMPhcIHiJGwtRYelKK6N6eJyVMeFQsi/nNXz30S1vlm1QCAQCATVuczgNvf10lrKfVzzyV5BB3JOJmc2mzW0ZKqSpHONhWrcY1Fcc8z5k06KHtgLHXi0owJSkPiV6QOqhAcKz+KDpKnujMdjrDxwkcDmA781uijQKYiWUviyNUHKZDLpjEYjplfQz7CbDhRvKxg+h5DizHVnjnYFZ7WDb6lLK85XQdpKNXCMEnn1TYaiBdXvEQgEAoHwVMPNH6cC3jeYz3JcB37OS0/S8zNlvNB56d4vNZn3lkYGhdbNzjYLjgbeI+bzuR0PpDgrQ91k+ZF3QeB61mIoPbItFX5w0plupWrb4ANauVOIg3YR+MneuaREDERRtNX++EOd9gaErCVZhJBBICHDzMWRg8zdRDaUbYgf2r+v4MiFouiBInR4F0KgikolnYZ3c6veu5LyGe3BmgAigrQlDVbXwP/yJaRUPL2naJ+cw+FwOBwaHzSOaJkpNuYb4eLDn3asoZTM4U2tpAcipCUuTBFDNVMiyLWthBX3V9e1jTHLKrWasjGocoxFVTPyZ22RsbndrzrsYO8IOWvbdjYF4HKkmFPBVpDy45zOHzvu+4/EiG1zAGRj/SpxBc3hcDicmCX7iRNkXJrqRNzBkaDrOiVG6lajJuDqQIC5eTiTbajzYZfY9z2EMWR65nluRuw479CH6kZ7FNvUhB17JjJUbZxmhNqcJjDtOiDZ+KCCuW1Mt0Zdw+YMkDJ3E2n1inYO+pL78n4/P3NH' $Speedometer &= 'fbp3gEOZdQoOh8Ph8GVNliUJ9laWQu2gqqoK/U3ToE5BfDQOQdoQChAWuE5Q1JiTuYqi+KlKALIsm43jGHwrWTol81IzOLk2sU6fA8UNUIYKta8sy0mIF7wP+w2Nk30/217oGIbBMiS+2DuX1SiCKAwr3lARXUjeYyaXN0mCERIXMQTE1QTmASYP4FrGVSArV1lk7UISshRRUTdKRBxBUIn3S1l/w88cfqolAWfA5v+g6Omunk73ZPNxus45h84y4Hb0GGOMMUYLsbMoLDIhFxYWEGRBUfOqcOzExETa29vDuZoFiozNquj54uJi6vf7yIJkUdrawcK1bFPIjEwUn0XWITI7Y/F4tlvkfaKw++zsLM7H9WIRXBbCRfFaXBt2F9sfxhaM8X5STihIOcGBv0ljsnQ3NzcTnIxZnOhOnzY2NtIRGJOoGWOMMYYCpB11NHgC2BOTx/hZy3Xkxuhpf38fPTsx8BnV7KuONTmrstrmTEr0fUYlf4hYVa4jJx+kvL4NJT74tyhKKpLYR7cD3hdkDXJVbdfW1lKn00l57RoGxbHaovRXbtEIQcMxDEgnOgHhvvH38SyNK6OytbWV4GQUNGRSpO3t7dpaYERrdGk9r3+OMcYYYyhbGk1jJI37dWIX5UnP57U5sC+jXsAYJVOJ5L6ew+vrM8U5Htfn4Ryui7kmwWfb2dlBQ/uhoK2vr6fd3d2jStcYxcwYY4wxiEZRfKLYRIGi6HAf53MLUeIcJSqK2d/gfOxZGQvKClEiY3QvihiPRfnjvWLgFS7m6sSO996YKFpes5d6vd5Q0LrdLsKGJUFTG+YPqXMj+IGMMcYYQ4kpdLih/DDiFKUsrgeLolaMdul1KUgqU5xTadPvR6LEqdDl8h4qoCkQn4PzUTgb95pzMBgkOBkFDRkdVdd7oShqKmUx3DkCjDHGGCNtniBm2iYwigyPIQKlkSl+l1EwlbECpaBMKbKl+xrkKb2m1Neqem91r2cpro36/0JYc123oaBhcV7pIfXddLRZfsYYOcYYY4yTBHQtV1xHxvlS4IR9L+P5Kju169EURtFUxHiMUK5ChK/kDRoZ1HPgJ5yrffb/GX22lZWVoaDNzc0loRjuxOI1ZHXkasJJCDZvjDHGmFFk+QHN2IzBkxgdA0G0NJIW15Addg2a3kfd604VtTrJ03stSR8lkluV1sb9f5eWloaCNj8/zxPUtvnjIOUW9UkwUK8Eg/v8jDol2Fa1WNrtdpqZmUmtVitNTU2l6elpHKs+T05OVmm0q6uraXl5GXVUMLCP1NtiRseYMMYYY4xFWKnNONX1gSq/QAU5fl+v/4e9s8dBGIbBaIGgDtwhR8ohclKOkIskO+Lfw6uMVZAYun1vicA/9ejJr9a6LGiJK8LoIeyd55mr9/bfT4E6tdB7n8YYVkeMHstV49aavR9xo5Qy5ZyDCmkD1ZQQQgghxB/GHhyi7DyI39lxjGAC+moO8jsW6qpoTkhrQ9oQ2OQNUytE/ZHFUDEQI+5gcJ9rL74t3xdVBP4tardY0IQQQgghoupyVfuInoocL2xH4Rh3HbynsS/fo5/l+XxI7x8v9s4lpWIgiKL+dT1uxkFGMeAg+8nPICE7caRIQgLZhQ4Enfg3pgoutpfHc/Te6B5o0r8kPSyquuqy3iTESXEIX1tClK4qv6SBmofMjSjWxwq+xX0o0buw6RJCDcVTvRn2fWhzgc0IhQshhBBCrLcxYKOEe9hzBo9Z6MAC2IP1YD8cVtBEteil94HfQVs2cKYF+nzhz2OruKPGab2GyUAMw+DFb7uus2YSDTZnfU82aNt2zrJszvPc5By8VVXl8g0cr0WtFyGEEEKILWVVAr5fxnfHuNCuj1kGC/yXYJEkyW+SQBRFnNYKMI8fcNkNzKOxVhjXXsF766QauELwJuucCCGEEEKwc2id1CWLw/N7/C3eG9o27OT6W2YjjuPA6GJr0OGx9bn5e2w18sFxqHCO66lgzAbhNhBC' $Speedometer &= 'CCGEDDR2JkGmKnRMBbiY/DRNHjHs+34ex9GeNrZ5N7qappmLovCoYV3XHk0sy9IE0v1ppGn6a6BZSicdjvts4fE6r/F4lbVI45XPrakUCCGEEEKwc+qHnbNJjRiGweiTx5400E3XuUSOkYNk1TPkID1OT5NtF/1vEn2dCQiyaPeF+oGxkLDXAlvv6n7t+15t2wpQSikUY6EXixX1H1VkpZRQksUdyjkLiHh/aTw2aDaO47Vz43KIP0mlUqlsG4vssokbiefmnVs78+ZQ1HB+3aBNLIWd4gYOnhxLIHc8GVkn+Fp5apy79YRnsMWxUvifVCqVMEtIIojP+vM803XdMf+rOiMGCiIXHGoRH9VjMViwD1BO08QwDAaQJH2zd3ehdlxlHId/a83XPp/0YCjFpK2e4pWRIgYq6k1JKhRBiBLFLxTFRFpDDCSQi6qliih+l4o3ufFSKpQWlaIIWiiKVBBFaAOCgljR0mpOztl71tffdMg02TmEeJeNeR9YrJk9M2vfvqzZ+/8udHFmjDEzl2lqTyNHmNSs7TginhV11FsZLvyLl378DP/4zhP883tPMnv2d6Atpj4hHE6eWhWSSI1jmQay8DhUe25axphrZq6OhVNVVVffsysSo5SCpF3rSRqvDetcEb0xlxebUhqPGdXDDQvMGGM674kkmrYmU9DyEoqRMBO/+f4P+drjP+Knv3+Grq0IfWC1uYUvH/40n/jAB3n5XW9gY0+F6wMuFdzqhJpC7KDJBV95jDFWoI2uKMSGaLCc8xhQOxZbu7LN1tfXufPOO1leXibGOIy6rum6bogQW1tbY3Nzc1ivlDIUayGE4XyMNOv7fi7CbGiWvsjtlIwx5j9xSypZfQzaUZZemSqce1FfOHxUjol8h9qxFR1ow3fCoQN3vUV///ZT0vmkWR+lramKskpJ6hWVY5KKjDFm7vf243Hf96/+yH+IEBvFGIe4sVLKXN/Qa/QHHZ+5eu1xnvsTwunTpy+3elr015vGGLNeJuASrvYAlAJnH/kWjz7xA2grulQxRdB2EAvnS6ai5rm//Jm3fvc0f3zzHazcdzdqKlKONLnQFgeTjgTU7GaMsZ20pmnYv3//eG3c/Ro7CDC6ur3TfHeCYR534objq1phDt8TYxzmEcePH9ciM8aYULJKjtKsV87Svx//rfa+flPQiLYV3okaVS2qlr2YtKpcqxVa1a3TVz70OfWzLBUphplU4jAXSTEVXYMxxuI2rk6TmAv27/teKaW5jLPL57vjxMbz6XQ61yRgdObMmcsxG6dOndIiM8aYsB2lkKSc9YqKHnvgEa2wKppuKMC8R0tNrZZagFhCrCAahK+0ufFGvfzrc9IsSalXUdQFDQWaNE26KRljrhchtuvzsfD632nMdp1/dv7aWLjNveL04xbbojLGmFJX0FSUlFkujqef/RXbFBqAKCgt0wjBiZqKybSm3W7xuaYumb+ef4n+hb+Bc5TKkXPE4ykxQVtx8zLGSLru5865ucbmOedhSLre2uM/NodnJZFSAhhm59xcw/Wu6xhx4sQJLTRjjElZs5Q1nWVdmEkH7zmoyk9E7TUBedeq8p3Aq/aVAOHQ8lIjVyGqdb149hcK270Uk0LckZSVy7D0QjDG2A7eyZMnL++gxRhZaMYYo0IXM13jCR28ya3RFiBBWFuiEKiqQOMKufFUK2vgO3b6ikle5pZmie7WDXxTI2WaukGABI6FYIyxHLa5HDQfQkASC8sYY7yg87iQWcnwqfvfx9QL17SUnR6WHLGIpvbUfaRsb1FXgaW2ENnh0NvuYWXzNnztCRWAJ1HwKnhuLGOMkTSMuq4Z+fEd6MIyxpiSSU6oJNpZ4cB77mX/7ZsoZjq11LMW5ZpprinUyFUk1YRZwq+u8pmPfoTm9j04B/IVFJFyZiAWgTHGdtLmCzQWnDHGpArqWYDlhrjs4e59PPnQN7lj3z6qUsh1z1pT2CiRPIHJxjpVhBW/yucPvJ+D7z6E' $Speedometer &= 'VhsEgId0Re89FRaMMcZy2BY/qNYYYypXkbsah/AOQt+z92OH+Fn/DQ4/9jDPP3+OLYCllnYahqbDt926j4fu/zAPfvEMvK6jkKmpcDmDADwigWtYBMYYK876vmfkL0ISi8oYYyINbAV8EB5gpcP3gbsePMyffvJznvvq03z2vgd4x953cu/b38vZjz/MC48+xSe//iW296wSJoJUQNDIAZ5B5cEVbhRjjJE0zkPfzhHHjh1TzlmLyhhjYspSlrQT1CtrO06VlKUYlae9SknKKUgpSjs7KmGqpKiSZ9pRr21ladZLRcM6mgZtpUtrlKIbyRhjMRvjfPTo0TFmA44cOaJBSlLOUirSFQ2EcylKJUtBylHKl24rSVIoUp+laVKRrhh5GElxHJIuPZTLMEoZ7hquBEna1nCu0kspKGWpT9JwQ0r6f2aMMcYYc3HT7NUC7b/snF0OgyEIBAc1Te9/ot7rk6X+NByiYYAHyG541yi7xurzp9sw8AYSvAwIaC4O/aEZRyOMODOSriDB7oxOHt1Jvx2xSqCghWgKCPDxPpqGgfXribvP+F+KoiiKoigiAnfPfsw5v+zcMY7dRgzH4R85kpo0adKnSGkE8DX2BHu9HMK9r+IqD5vdtfH89u2TNMN/RhKcwFd44CdQHHHEnoAGIiIoOM2hIuQcmiCAYjRGrAkPUSq7NjqtQDjIFwzH8T0TgMDCQLCY4wa2hRwJ1uBg0CawJgYcihOCYtCsMRBA4R6llFJKKUliWZafBzQzgwgiQA6jgGhHrUAthmOYg3BsAgRF4PXoi2FCgAzcwEyIhhWQGlMpgCNBDVhDiAIOVmAAMIMwAmFmFILVAsTdSSmllFKShJmxqbXyn4eHB+1C/6tVmhfF7aY5Fl206CbtMbfQWkO1HS0/jonpskpvVXqXtEit9tSkW49rj7UtiqiStsYedd4j2qwWPb6fVdWkJbSsTVVdq5q17u/dm5RSSiml1po2EaHHx8efz6DtDBDQBBFIAYMxmuGIYa7ghoqw4kADRJFgbfALgAN1zy7wEAp2q0/IwFvD3t+wlxfi9IxOT3C+MHz8E334A2yE4FCDMhVChnOfUkoppZS/2TAzIoIfhq2wCQlvAQFRoLozmmHXmeF8hV9/A0S40QgGBbbVX8/Y5Uo8fcHeb+jrV+z0D5z+xp6e0es37HZlOj3D2xW99v3vFyo3HCgDMAJ/fcI+/I7KyBBGANRKmUaC+5VSSimlJIl/2bub1baBIIDj/9ldK7Kd5u1y8gv4kEMOheYdQo69+e0KJRS3BYt+RB877cgZMCQ3p5cyPxg0+6E9DxrQWrjSNA21VlQ4ysKYhQEloVacMe0P5NstfD8gn7+yeNwjhw76ARionNzArgpUQKmWi62CH685oW2m5BVMCn1l/DUgnx5JTCAgivdiKf7y/ymEEEIIcYvAi8vSxf6DttvtaJdXNGnETCmBJGoPOT+RHj7C3XvOoaKAYKqAkBERhITh7oafH+5Z6QjvFmgdETL8/gEXl5B5UyGEEEIIqvoi949O0zQhIvitS6dtSJ+zsNz5uu21sHWbsz02tjM9t3l7er7ZbNhutwJQ1us1XdexXF1x9HygjyTDsuVcdVFwUhW0UlVhAlDyl2/kIpALT8CciqBtQ69wwdsKIYQQQvDiyAsw40VVzvnV4s1yDx974eV77H2fs8A7g6W8yI3VYm3b4tIfds4dhWEYCKLrTyAQQQjk/jdUo6gRku3sjBkIpEzKfbAyMipG3UPFQNByzoZMwOP5gs3Of4zzuNuvTG1wZsxAQa2xew13X9Cn5sEWz3V41vk4u9IGE65wuX8TBEEQBEEgoaKMSdb00iWRAhI4iZnzJV69d8mZxOxT/nhGMgdwvrXGb63V4GRiTSlZKeUUNDb3s8ufs0/n3p5v9s6dt8qjieO/2X2Ojy/4gg0YEwVZ3IQbIjdRGpSGIkqfgpR8Cr5BehqatBHiM1DSIhAlEkGKQAoXv7z4fbE5' $Speedometer &= 'gbM7yY4y0pNH7hygmZ/0eHdnL2fd/TWzO3uMw5JGHdSKVqWogv9zgFRF3u2jQK1TRrUDEd4rCMqs8q8SBEEQBEHgIinnjKpa6ULrxo0b3L59m9FoxPnz5008bW1tmei6cOECy8vLnDlzhpWVFbMBNrfW2ubbPA+Pen9f3LkgdPvr169ZXFzE6VqjudWcKTADKBWRxFQTef04h0YAESRBRqjWFmqXQDL519/Nu1ZmrAMUmBayFMiZf5kgCIIgCAITUoPnlsz29OlT7t+/b4Lr3r17JrpExAWch0dt7Pz8PGfPnjURd/HiRZrzq7Wb/dKlS4zHYzY3N61fRHD85YB2YfPFixcMPWj8t6XGSApToWKAVARQgLWjHBZ9P8URySQVkEwtoKLw2w68naBrR5hmyAqdZkjF2h0fjyAIgiAIIg9Z/xLAzs6O9/U9ZC2c6WWzt9IikQ8fPrS5d+/e7a/pnjlKKVaeOnWKjY0NTp48afXLly9z9epVc5YNPWi2CaigUHBAxNqwvMRhqXOZVASZAhUgg2ZE7IMvjlHGI0QrlERNoB1QFPh4uTaCIAiCIIg0F/1UF6UU86CJiIsrv6Hp4/yc2rC/L958vPW7+Hv27Jmt7bTxf2XUMJG3tLSEk1oM9c2bN74zHNWClRWYHXNY8qQgH6Zol6jLC9QvT6Db55Bvv0K++xq+OcfkyJj0rpD3CgIU+/OBrlY+FkEQBEEQBLXWftoLiy6qahNb9rnA6guzofhyj5qLMw+J+pqOCz+gedMsTPry5cu+QEPu3Lmjt27douVCG+Tk+OcDnqeXSW8npN0ppW2CETK7QF1bRJePICdOIwvzyOpR9PgaZf0YeuI4eXWNtLgAm1swN4MuzlPnZ1BJQCK1tapCl/nUBEEQBEEQDLVPY319nVevXh2UUNbbB6becFyk+dhe29exs2c3b97k2rVrXL9+nStXrjSxJgBdq0wmE/V8H/4jvllfpPvpF1iag/VV8sYqurbCdG5MlUQFxpMJkhJIRjSTVVASIhkS8P9dGGVkZkSyOZgwEwWUz0IQBEEQBIFrH799ub+/b7cqDxJajtsPSL3hNr+E0Nb1dBve75cE7CxaKaWl2XBxZnQAe3t7Q4+Z1ftijR+/p6iiklARBEgKoymIwHR2hobZrQShghZbg5Uj/s8hQK4KLs4QPjVBEARBEAQunHLO9gF29MuTzDouwgbzhh41sw/TePRDnDnnZnPxZrc7Syns7u7SpwOYTCa2CY+pDlWi2RSyAG5WDKhQFCkZxMxo5+MSVfydTzGToEhVRBNGEj4HQRAEQRAErn8cVeX58+cALtz6YdChV80vFQyT3ppNVYfhz76nrQm1Fkpta5jXbijQhj/odfrwHkjwQaAIRhIYmasOcgIUbHoBFQw0mZ2RgipSBRAQQW0tsG4+KUEQBEEQBP3D/S64+u9vur2fA60vyPrzrO6XDXq2fqJab/v6lvDW60OB1hKptacGLJGaL+ClU0dTkggjrYzcroAoqhWRZHX3k4kISAZNGBWzY91WmkkpFJQRHZ+SIAiCIAgCT04rIh6SZHt7m0ePHrVQpz2H+eTJkxZtbLnOTCs9ePDAjoc9fvx4IMqMvgfNQ5l23mzwLmd7icBfH7AxffiTvTPGTRgGozBtuldKWLpkqbhAxE24QXMXJLgCF2DJnDVjtu6oi8cuXVtK7L8vrzgyYkVieZ/0sMG/Hcan/3fsruvGtwfscDhYBJPY4k+yxUR8emoIJ/vxRwrfpt8ROcl76BQsHNEZ9T3EMKwFWaIw4Hm/dg+EEEIIIUIIVOKDqDiW9qM/inHee3POWd/31jSN7XY7W6/XVte1rVYrWy6XtlgsDKaNghE0mDLuCKuqykZwiwDjR08WxbRVURQzDPJagiTNdnkdQXj8L2MiU4aG+AAHiFDjHrQxHm2GORlzc8TPAtvHc9kTDTqBa2eGOZibccX7I4QQQgiVO6H0vDP2UzCeHp/Bs8zKskz903Tj' $Speedometer &= 'AIjZNK6F7Bufg+wby5vo843RPM+vM2ibzcb2+71FsFB0hlN7e4QQQgghRNu2tt1uLzJotIDz+ZxO7mrvWXLcxu0RQgghhNAeOOccq5ngj727V2EYhqEw2qZNIYMpdDD0/R/LazM1YDyJlv7eQSZgsnn8zpDgNxCyr1QN+sQYd/M8rx+3+Uy0+u8PAACAXaDazxljbFOcIYR9KeX7p2O9L9XdqVIHWkXQHwAAAB00rZRSLdZ00CTn7Ls4fXpu7ab1BwAAAIUJlmXxY1ugmZlvV1+/O6vnvgAAADCOo2bRbhdoinqamcdAm/ZbfwAAAFxxTtO0XaBphkdKyUMBPhG3TtftCgAAAAoINDPQZPixd+8oDMNAAESd3x2Uvf+ZBCKNDuJ82GJACJIqLgTzINikcTusjJebUsoYaHk95B00wg9gVQK4X3R6J0mSRM/wsVr+Y4F6tlcOyb4HWkRsvff5HTQmaEfG2bwNfn7+kpEmSZJEQ2VfcUKZV37ZXhHx+4iz1roBTNP+FWdj7FGPiUWhY5TxqY8VSZIksTIKnFTSPq01Jmgf9u4dhWEYCMKwHynU+P4nFDqAikAgD6YYGBC4iRrB/4GxbGR5y0XGu2OC5lporTUtkklZ9Ob8T/a2sgzW73HgOU8xrQoAAPCZU0f+iOnrWutQA00eW1BRWj/oBMnjqTKDHJuUeux5S+6iAQAAeBPK+ZTv+X7vfZPbBK2UolIbOmuRXGBqoBlkUnLozvGicc5fCQAAgHfNst+5N6TuHD/2ziW0qiOM46ev2KhVSbRYiAqR7AXJQoRslPggC0EhCxciPlZZKLhwo0RdCAm4iKvskihRcBdFXIkrN4rEV6GRaAutKCIqjdY2bb/Of+AHw3jP9RqTCynfD4aZM68zM5dk/nwzZ4YA+9C0FgpzLYwQYbLcyacTqTUPs+A8w3Ecx3EcJ91vllrUFK9L0rmDs7pAW7NmTXH//n0V0rEX8tncNusNBdU9PT1dXL9+vejr6yt2795dtLa2Fvv371dntLyJypxXOI7jOI7jpCuSQj5xjx8/LlavXv1xgdbS0lJMTExQwQeVA2GJOMKowzwfPk4Hsl25cqU4efJksWPHjqKtrU2b44rOzs7i6NGjxejoaPHkyZPizp072Zefcwvvgnwwc5fCc/6VRn62G1+myuXk40d9eVskZslLXbOC4ziO4zjMxYRL89QKx2rI4IT1DJEmrbNq1aqiIjdu3MDJimW7du2yMOlbuBcq+qFiEwoLPQfhYUAeOdLkFP/06VO7dOmSHTlyxLZs2WLLly9Xj6MLDY0+LjQ4+mFZ0xYsWGCh4RaWOXmn1YO3b99aEEBpP+XK3l8xXvk1dqQxLowfEMc7GEtQOyiLoxzjC4Q/DcdxHMdxmFvDHnzmZRN6LkH55GquG3JNdfDgQZP2Qoel7oOIjo6OtILoADGBACFOPHz40IaGhuzQoUO2efNmW7ZsWSq4EGDEyZcIi0ItFWepcAuHt9VVgCCMEIYMJn4urpQXgfr+/XvGx4Aw+fLy1Al5ed6BIy2tQ25mOI7jOI6j+Zv5OJ+7AUPJbM3BlNu+fTvi7OMCbdOmTfbu3bu8klRQ2MuXL21wcDCKsfb2dlu0aBFCC+EVw+HgWcSY0klTnNJjmDJr1661vXv32sDAgN28eVMiEEsRgzSnoJTpIz+axJraACU/1kd/RMKpA9Lw1XdBOY1Dhbzk+0wcx3Ecxy1orB7yTJx83GzB3L5169baBdqePXuiNSxdYqMi/Nu3b0tc5dawGCYeHysZzwsXLrT169fbgQMH7OzZs3br1i3egeUKURSFIoNTB+hvJcthVWGWiyXaTDzlGFPyYBXDQbqUmZYhfwrm2E/GcRzHcRy0B1RbuZuJHik1yIQ9+SbNVbNAO3HihF28eJHG5WumCAJZx6LgQpRhDUtFWmNjo23cuNF6enrs/PnzFq6SqjQQWI3S/V9131+VWwsJSyRCiYomDWHJc9mSZ6nYIj/C' $Speedometer &= 'DCteLvzk612kzwjHcRzHcTCgpIaoatrjU61ppXVdu3bNent7axdoIyMj2tSfV47KlFPDtLSJEItuxYoV2nsWy547d87C16CUyy1TVfd7kQeRUkcQVYTz5d2KeUmjrWl/qCutM38PZfI0xgdoCxY50nj/zHAcx3Ech73iz549k58KN7ZcfbZAw4dTp07Z8PBwbQIN19XVlTcg35sV96AdP37cxsbG7Pnz51XFAnF5p4lPhY7AJ60eAoR3sBcNIfTmzRstx0aLYbhhwZYsWWKLFy9mfx3x+gqDPqks41T1ByWPxGw4INgePHhgjx49snBwnYXz6Gzfvn0WzoOTCVT78+Ti87179+zFixeySMYyk5OT5jiO4zjOzDXA5cuX47wejv+y7u5u6+/vj1auqakp5vWZLHOmWifVQ5rTEWe1C7QNGzZkomL+k4u+vH+IMtLHx8ft2LFj1tTUpKVa7Z1DjMkhzuTrIwlZEBGZqSIv/Vgg3L0VP4xobm5G8LEszDEjMczScUNDA3v5FCZffP/SpUvtwoULFs6P0zvpQx1+P8dxHIc5hTmkwrFKpR+9sepCGdIpQ1gOsjjml6rPGcRX2p5TurWJuPwdtBUIkx9YRqQskI/03Oo019Ce06dP80EjHzBqvo3+ypUrbefOnaZtYFevXrXXr1/XsvWpoiGKPm7btq2qQKt4RH84ryzers4hsaHC/9VJvlwnFQaJK6aiCyIp+kEtF3fv3i3OnDmjcCwb/vAYC4W5pkF16fA56sdVPdju8OHD8baEV69e6e5THT4bywcRqCuueI5t4z1chxVEGWmqT22O+YOVr1i3bl2sT6hd6h9tnxscx3Ec/Z/m/zF3LKaHlRMnx2GlckJl9P+cOYT09P84cxiQDsrDXEFdegbufkzeS51yakPpZd6Cua4M6k79FOYr9Y07KfP20V853lkvaM9/7J29a1NRGIff+l0TaRcdEpdAhNJ/oUvnxCwdswgFp5DBqRQ6dOjsWDrqmCFkMeAkrgVLEMVVDQiCIbhYvz/O78ADL4drqGCEyvlBuJ85556vvM99z819Dw8PsZswgWxvPBamPq3f79ve3p41m01bXl624JixRqNh4TkyGw6HkZvCrFghA9AnyEt2WfUxQ8WAVq/XCflk/4v8ABDQpJ2O7TCdaLVazTqdTqxoAAgIkwJRa5sBQTqs+07t89d3YqOEOWcL9M3Ao0OrI+gcQZiWyhcAVJ4Ekydt7YvXJzEwq9WqhffH+YEfl/NRVlZWVhZA5OFG694+pLEYiTnNOiEW/fdlA0hjhtLf+DQKD3CYpgUwYKNknzxE+HJ4wEvLzFvyiXCT2iWVn/U0Ig4RiVLA04dr/2eAjQPHs4LKQhsCzNTBZDKxMAUaoa3VasVoTJVKRY+J2fb2tg0GgxhrEwGn+oS3YcRISrO0IDdaKj3bJIDY2triwuPytIsG93c3qnwt1RAHBwe2s7Oj8+h0VKqO+wZUR5bHi06qcFVqCBqADk1ebEdPV6/Xo5HwksUPEAkY+k7rBwTLMNVqx8fHnMuAs42NDQsvDdb+pCx/WVlZWVlZsiEClBSOPIxhC9L9wBD2wKdzYvuLPcORwDWlYMSxdEneOl/5cU3kj4oAz5fZg2gqvEZyQKT1wDryEMjxeQlQBjJDRKE4gxae744QdXR0ZKPRiLoF0Lzd9p7PuJ3Ce6lUsrW1NVtZWYket/X1dTlqYlqrq6sLfwRomgfe39+P7jwPGqdZgBADwN8ljMfjGKy92+3GbageagbKmD4sl8vqaNonQBKcCYYioIVnwwpjkdKxw/Ni2uajdARayjN+dzqdQum6Fq1z7QxAbSv6vUCOqU9gU+fFzhD+RGCSL+dclJWVlZWVggTAgxfG35BjU/hN9zfzwBbTa5opSWdmZtk5D0p4gZTGiSATkPIwVaAU2lJIwzHgIVP7ffkAR4CN+tL5hfU6b9FOkvcEIsUIVxxxzS4CcLL/vt08xHroRjzipMenNjc3' $Speedometer &= 'rd1uK4/fF+4Xe9eOUyEURPH//xBi5xboCVtgBWzAgoJNEHpqaE1cBi7ASisbGxol8Uc0/sU5J5nkJlfQRosXJrm5gTf3V725wzlnhsBpYRj2sFkiCWgzzyWV5MHMBOAeRAAAAtEr8B8lqwgaLMsStTrBtgQoHz4YA4A/fSVI6wVTZgAzrTUxHn7WOpgDgETU5KrrmgxOCdQIQmzbFuNQvQH0X/xGoeA4jnUOkBYwL57R4zwAqxL4+bc22WSTTTaZreE5rmqgpmUTB+o6/1aDkyxDmKGEb+1L20+EA463JaDMc1lnM3Q/dQx9aHb5JJOc8N1erbP/U3ygZ9f9ju0NPRQVqPGapmmPmAnxAv7LDSF/PCOG0Pcg9HGeKIpIEBhrgwg113Wdpmn4TRU2KyQB7buuc/I8d6qq0qwabiuahaKfSGw4SZIQEBgEAT9ptm2LFKgCCDWTppHyKA5N5EjgY94qsC7n8X3fybIMoEPz5oEsGTJsWIM3Dc/zOKYoCu63rmtk9tDgg3fYJ24oyMh9sXcmQHZUexnvgSARd0QRlQRBQRbBsIoQAggEqCKAAi8sQVwBAYNJWB67gOy7IFugSjZBIoKILPUQ2WQrcUF8KCWliCDu6/M9SXLt36n6lV+dusNkMpPHmDpfTVff29PL6e7T93z9/bduzaKhoaGhQasMv9eMm/zOX3HFFfoQ63PVPfLII7ig8NvObza/9+W3vn+pxum8fO7TK3UAa4tjy2jQVwurCeD4OLNzPJbpjpOuMbaJOZNWFxUt1bb0vbYNtUqUqp3HUEETqSACza6qg3VggfvN72sa6c5UW9y8brYTqIBut9123dZbb90de+yxqmjFktZngejefPPNri9bybz4nAPG8u233x7lrWw/BkYnaNhKsbtuuummSo//7+Vn56+++iqmRMkZy4yusfPw8BQfvIULF0KK7KT6rGnmzE7utqMe3whN1svlECkeWsyW2VZvKMeDnEno+D/rzps3r+vz0Gk71+cgJeTKP6KhoaGhYU34N7/zzjvd7Nmz+Z2XFPk7rNmw/P73igu/x5Apfq8hKWUcksRcfPHFjimawroadWQmJjde2vs8Xgz+kgVJRhKRYRNjECSRcYbxEcJme9xuKDnjXPuUUd2yZcu6mTNn4mPNMv/neJVjlwSOa0Ptb9pHBaMy1s2YMYM2eM2+qvwgiVgGbaTPXIWhhHSzzTYrgYaHHXaY6xBMQIRoIWxbbrll98orr5RgTDCuIAFB8lSYIKrOVPBhWt71Hb7rL+CKnmgMoJYsY+ofgk96v7D1+o7af17BPzkxGD1zPg34Kxe46+t/ck4QsExX4QNE58Zpr1u6dCnRGCUqMh0qX3/99W7u3LllPe3qErPe/NltsskmrusNtmOivnHzJLws8yEub1uLFi2yszjVZC7fmrpeKu36RHe5Dp95sAj3xTdu8mz4DQ0NDQ2OF+lnRuAXypdjiqqZ1pA6DVOOOXx3rFBRMkqfZbyEQ2SG+rYxDjGmMJ6lQmU73LffmYMUJRyvsi0IEIx1jH95zqphCByogWeccYaig4qb7Xc7CaJERxJkMByfkyAxjmK5y+u0VoxfeZ+vuuoqRBaiOEfGk2ZDwPJGiF5QuvysMe1LPZv/pO/0g56Z9/f7ky/3N3P5Ot36gxXdBuv1jJ2TX9kTmoHErF8kqen/NEFCoIzYYNKBkonlOPA9/PDD3a677gpB86KmlM3DIDnL6BneADIkOYmYD1xZLyN6AG8vsGr2Q6cd5ugp7PwqeT6M6agoGjlraGhomDwncn9P08wFoej9h1XCOsAYoXmQcYHPw8xkCa0wBoYpHsyfPx8ixveaKOK0niTMY5guwzGuXsft+R/jnm4yjlu4ABVT3IknnpipQEw7VdY9/fTTDVLje0aDqiLaZs2/ZdKSpNWnTrOx7bbbdjfeeGMG6a0V5Cw5BCZQydm4CZpAuqRjTAUs36DvvNPW6dajc60PHe+Z+KB/Q/nKJ906' $Speedometer &= 'X+m1NKaeoOGah2pW4E0PkonJ0o7JXBMi6z3//PPdZZddhnk3pUvfPOxkmThQosb+IFqZYLYsd1vgMWu5WEUs/QNc34fUdTNFCASSYyoJM6WcPnE0NDQ0NOif7G93AjVEUqYqxW8yn5ljyWDuy7RmTdfxdxtFRTLl2OE4jIVFc6XkCgXrpJNOYkziu2NLmkvZxkjEMf25cv9mGHj66adpa+b/ItsB5kzayjom6JXsJXlNE6/qWiaCddxMAsl1xB/P/a81Y1mqqCSpF+P1QRPcBBweYXqfuQ/a8i/RgaDw8LD+w3/22X2/+MVunS98oVv56u936/zavRhA+/9Pg6TJzwrok3ZAOhs3XrnWzoeyRufsoyVLZ+vrWzLnodH5Uvk1FbB0+Cd/XLfTTjsNk8QNOqADS+jseFQr0ORaZ1nWBJq+ZN4LPuvL4Da16jbBNCkNDQ0NDTrOQxj4nKkwHnvsMX/XWS5BKirUnDlzyIjANvh1laAAUy0ZOGDAwAMPPIBI4PaSk3RWT9Mm6pZKG8tVpgwSS3OoFhcVvNoMqdqX6qBjE77oVKnJADtJl2OOJM32OT6xvWQzHfDxd2Mb2ir55RpgWmU5JJDjMHfbtSZhPu5H8oqJKGhIjTizTY3BfYP+4ZjeOz++/UY3/ZwLu+m7zO5G9tizG5x7Zrfu7/wmN5VexTTEGbK8AWlCNFIziVdx4tt3331RpZiI2uQ71wBnvuKX1tfORIHTgdNOac6y4lx5zTXXlMjPvqh5B5S20ycgYFs5Zp0A0Il9DJXbIZH4AkgWnXOuTGJiEnFDQ0NDQ5bakzRo9pMU5cv3vffeS37N4vR/4YUXdosXL6ZSDc7jZerrOnZHHHFEmS9YsKAkSt9tt90KSVGBEpoLPZ6uMBzTsUhTqmRNIoaCR/vYzvOoTaocsy71ZB62F154Ia043bPPPsux0h/aADqmkgECoBIpMBhNChwHVRElcOwTkuY2uBt5zLUFnOsbb7wBn5gwQWMnSJxT4gJNf/mVbvr8U7t1d9676669uOvef70b2aDvcJ/7XNc99evdCORk3X6iqf0EJeGzbbcskikylGvN3I+MTEczWtIs/bJ7wDK/+0bDukqxRH3yMN5zzz3do48+2n344YcdSF8z2pG1zwynJniBfWfoshJxHQWjWZX99wVcdUb17S3t+pPUwRsaGhqa/5kkQwWJ5SpaKmHMUX90eWFSvRLsK1JTSMjImmAycpZpEmS/qXiRiNzxQj8wt2FdrDmkeyAwjUTsfCb9BukeaCvjHd8JBkQhw/JDtgLaYHsVNcq4lm01KMB2SkjNmH/LLbdAzhQWnDO2StZoQ1ELd9xxR5bXwRImdV9rBIYMFnnxxRcRfiZs4oQJj/R1HQdGbnyWGOyxc2/KfLkb+XDHbmT7rbrlx/1Et+IH9+hWrt93nJE++mXFoPDNjs7uRelKx2fOl6EVAtJUmQ8KqOVbC49L8CRbmk4heq7PA8pDgZTp/mq5Oou0EySQ5C/LfiilZ3bjPkEepSJoT3YA/R6YJiFIoKGhoaFBny6jM7WcMP/ggw8gHOWFeeONN8YnjSo8RvRnySTHD60wfEc0gEihoBENaiRnXROyrC84ni4vuu1kvUyiL1XFMv8nUCCAQKJ2sfyCCy5AscIiwz5VzyBcWmTK+i+99FLWjubYHEOihk9cSRklNLUmWXPZrFmzUBVREdnedg2NNl0L4HUiHQvXaGRCBE1stNFG+GUVpeYzxZd76fb0JV23aEnHiwgsbNpI39GX9zdz+f/08tT0kmaDfwmo2kin5TMLvXaqZGkv19GRedYl0+egLMsgAGAnzcr0zH3A/KzzowSRZYIHlIeaAAUfGJxCMxKHdeysHJNSXPy/InscEzmbh3MS/c8aGhoaWq3NfIFnrtmTacMNN+T/haQcddRREDSSlOLMT7QlpIoX9zI5ztQJW4FkK3+/M0cm32+++WZJout0wKTmqnc1kvi4LwMRaCtjh+OOJkfm' $Speedometer &= '7I927bnnnhzT66FPnteCdCClPTn+1XWps6j6VlttpZhgkIFkuC62vlb0HxRMxa5JIWiE2j7xxBMlx4tZ7QPjMqNZ26vuICJVI50utadP+5ppMK7/U5M44XX79Vas7J79vedpI2ZFcsYgH5bjsMHKAeSIT0Xp4k0BMyT/5+3AzMkZ+iwpsoNlAluCJvQzcB3P3wcEMlV8CnbYYYdMU0Ln923HDqxkrPLFZ+ZFVvYtSbVPsiiZNLzZh8N9L1myhGWToJ41NDQ0NOTvfAaHmcg0xy8q1Nx///1lnczUD0xuLonJMUTTYeZSc+zYfffdVcdwMicHpm1wff258Dlz3aE5uFLB85wgSocccghmR9umf1v6pOH0X+/XcRLHf8Y41k+l0XZKRL1+/I826zqU5yJ59dqPpw5qihZTZRxUvMGnH041aQSNEkQ4BZLNmAvpja877Co7WPoZmBiWmyr0u/JGelPtwEaGPPXUU92DDz7IHEJkO4io8QIk2SoT+PznP09yPUlN2Z/ritzOSaIESb3pppu6Sy+9VGLlQ0XtLGz56SeWpSJK8r3DDz+cdmdRVvfhdulTYHvs9JpXObYEt3ZYxbfA/U7QzNnQ0NDQkD6+KkBMSTgINCPjQaZh0hmeF2m2zf3keOcLuooU66li8R2TpWZSAsryRV+SyFgKOcPMynchKcsi7enPxjIyDCByoJQpkLiNYw3AFGv7KwJEuxh72afXKS1GjuNuZ4oN/fdqM+x4cnn6/zp/6JSpouM5yBHARIIEBBd9hKrtIlSvXDauDi4hUT5NIuINde6xsI3ffvvtRFaWHClHHnkksjHkDObOtnRKFDRuCDfd7e3E+VDkvsXQPGLpoG99y/3335/10v7OOkR7pvrG8loh5O0KgscDYDblTDKrLd9tmdIkmmHSksZU+Ci1YQSp96Wst1poaGhoaMjxaOiLPwIG5X10nPd32cCCfFGvs/g7hjBnfFFBYmIdftMhPm6ncqfi5vaSqyRUaWp07vhRiyIECbAf2pvn6Gegq437yJRPRp/muWUpxFoEUaTQDBoYN7+wTZx7EmSmqQQCMuBUk0HQBLZ1ZFVvak0Y+D7uguUSKjtzOgl6g9977z1qdJGDpdjg+4rxREBItJxj0zeMlwy95CqD+OVNsqNkZ+M4oxIYHyanxK233ipRgqTpcMnkvtOXIDtnUdEOPfTQLICuOsaUD0SSM5cZNWpggg+/6iJ+bKV4a+2XtnpoaGhoaEhVhqkeO5588sl0ffG3W/80XVIkQCY91wyoH5cpLxAYynZU88Fak8FszF1X8YC5+0bJc700Y2YFnVzueGJ7hBkOFDs8H+D2mfuNoDhSP+X4rNhSW84yoa3jJlNgvORKYithTaVuSpQHQ2Sy/OKkEjTY+3PPPeeBVisBquvVBMSO60175plnulNPPRVSWBSpyy+/nIhF1knWnmbT2mZfcs9kOYtk0n5W9co8Y1lew/85ARn/zjvv7HnwRsH2hBbjaFm2F9rWVbs8LmQTWzTRK8cccwwPZKpg2Y7MhWaHT1KMmkhECA9yuU52dn8EvLbjR0NDQ0NDkoWsn5lVZKwwkyZQxwzSRbA8XXZOOOEELB3Ft/vkk0/urr76avzWKDOI2w5uPJgTi9lQpD+Yx1JNS8LIOKTliEkohCQx0wTIOMYxgftzfNfkatBgtsXrgDWM1B+QQ8dLx6zcZ46NCguKDDVJSyFlDHgvcozP2qRTov+QJ5UqRYHVL5ae+Oijjwb4dumYWBcCd/4pqKviu4zOBPmjc5Jzje+5XqpPtdyaflvZATGD4jeXBNI3lboAqw/MmEEPbufbBw8Pdns6JiZWfATcf70PTZG2pYYmzayJpn8BiLqehj7zVsN3y1K570wj4jYTjORsaGhoaNB6kb7U+iQTda9SJFngd5r1SUp74IEHkkoJ/7BiSnTMSaXH8c2xtXa1AelgLxEU6fPF+MTLu2N1Ouzn2Cquv/56kuky/kqeFAPMVuB+' $Speedometer &= '2K/tcB2FluLjff755yc/qMefjOgsFrGDDjpIMcG2WduaDBLj8fFyPPfYWpamhKkTCyDBHpg4J42gibPPPntARmFJSChoq+yI5/rkjYHw4S8Gkcobkz5iljGqTX010dNh0nYZzmrwQXZsox3rc3AdURPCdKqU9KS8bJJCFCyQhczrKNY8NvD48cCmFD1UVq/93PJccj7xYvcNDQ0NDWlRSTWLQunkpLR0IMsZByBjJCCn1BPfNRmm1UdzXAodtVO86yUkRCZ/BVGthjJQRGaSSYDUTakA2j5IHG0uuU6vvfbaMi4bcOcxAEXRcTWyrZSrsv5njlWaZ6mmg484bZMwpYsOE+MzihuEDqsZCEFG5Y6Et+x7lQk0lRp22WUXrFOkOZkSxMx7eMABB5BFwgZNLkG77rrrBldeeSVvAXXI7CpdhL4TdHfddVf3+OOPd2+//Xb6fXlTklSkWTHt+snah5Iz93X33Xdzs9KxPlWlbH8y+pRIR1P/0syYSWRNPJgFz/N8sjK/2/HdNmVnH6rapaMpSAmb42U7kxCvfqLhhoaGhoY0adZjCGQIglZHbhq9aUFx90MpQPKKohDhP40ipdDh7z9Jb/Wt3nzzzVkfdxgFAfJm4pvGviVmHn+om4vuP+YZww+apLNYgTiuqllt8WFCXSMIQgWNage0LQPo6oTtLK9Nj45F+ppnoCDbAMd414HIeU3GIGdY+mib1wFiXMpoHXfccZpmPzPgw899X7Ro0ZohaP16A278mWeeKaPPm5/kQkkU+RKljPxkJX/YGEhiMup3jyNxMxrETurDM2/evG7ZsmXuw/mE0NDQ0NDQVLQkHPiJ6b/l//MlOhUu5/XkNmnqE+kv5nII0syZM4urC0gfLkyrEJ+M0NSypIsM1iVdaTy+60q4zFSAT7dRpCzDRGsZKJaJHJMlkpI9MFoULNuA2iJ03nnndeecc06SPK9NCg/OMa2WLAmSvAxInD17NmQNYlquW51VAjivkWlD3M65QkvesyTCml3vu+++woH23nvvNULQsE0PsLUjR3rymYgPYC+GlaNeYbpELk3b+Koi64GlwlaTM5Z704S1LVH7kJ4zEGC8aGhoaGhoMIWDRCdJGOoWhKl2wQGZkPbTIClJgic0HZLfMiM5sUYdffTRSYAkTabdkPxIWjKTQfon1y4/TBY+L5GZWTXnzjvv7E477bQsVWgNaIgfyySI1rau3Xdsc54P7dUCZblEjjeUMGVb/UwOOjI/iOQenj/fqf+JqgZZmzFjRgeG+WtLVm1nKotJJIX7iFJgXh/uEwoo/uqTTtAE6tkAh35uQu0A+PLLL+Ocz01MRm7Dx50QsI7GyMgQL1QSRB4SymvgjEk7agd9vjc0NDQ0NEzUnygVsjvuuIOx0RJIjllJzkb1cxa1uiZpyjqgqHTp8M8c0eTcc88d6h6TY6+1NU02rxsOQQESJpZLqBQ1iDbFP61OrE4+rzlz5iiUmNsUUgUJQdkzi4Hqkj5pBhWYDBcTrzVJIWSFX1x00UXdwoULk7AyH5WsvfvuuyVgLlU421pHsuZ57LXXXljb8FkrKbCy3rWEK/lIXtPa91vIjZKwUQLrkksuYQeTn2ZDbLPNNiVU1AMnSB1heaZUtrw5Y2DMRHXKi0nOkCqRNancj48bkTRc8CR53sDVRUNDQ0NDi+BMtSvx1ltvuU5Nsixm3gmXS5ByygTqtTBBKo6MjATMTznlFJQZzI4SuVqdMnAN0yb/sz2QIkiU/m9ZdYDlRXS54YYbVINSQMHkiRjCvq3JaSJ3VSOJEvsy4E+zqeoaE35wbGMpRBLBS868pqIOTPAz6UnqRPpJ0lw/OYmZ/SkSD5egzmipcf3xxx8PdbGSXKaKlscRWX8b4HO/xRZbdGKNKWh9RYEBldi5aekk6UlQA5P/8znNlOMA28ha6wvAjSZMFbaLPRlS6E3K6Mq6Ev5Eyj00NDQ0NDTU9TMVC1R/GA9RS7IiTA7oo/qfiRzH' $Speedometer &= 'JEsGwuHnlqTNNqQfFTnISKIO6SE6EpIk6cHtR+KEagZZo91MBx98sL5S1HFmDgGTZKWlzOOl6lYI1tKlS1H4MH+aeaH2BZMPlGPaFs3Fc+fORXUrheXdd5oNnYMh2QlIzo4pNs2Z6duXbXAfNaHOgDsiQVEP4RmQ3wzu0++svqdpJk0LHjnuUAnhRyNrkqAZcjtA3vTiZSOpcUmIrY3MDjQG6nQSOjSSeRfHulLuYp999sEWnxfWizW0hmb91jNONDQ0NDQ0SDSSOFgDc9S6x/Vn4bJE/f+aiNQR+bbHY6Q6J8JElxalXC/bnqQisxDU2QtGJUoSt7oKTp2/DYJGxCXEx8LuTJoFPc+s/pNES9jm999/Px3/rWnK9ySJo1rt8r5m5QFJJInp58+fz4QolNcs2zZa3lH4C2lKRtakgibI7D+ALWOvrZz8MH8SLZFBAeMpqO52vC3AXFHKKCwK2/ekayfBmtiN+kBMAA0NDQ0NDUbnOaYlERsjG8GoqAmI24zq+1RHO9bHl8TV24hU3Zj8LPkyaTrmyhRDVNPq7VWtJDpJaFNxZC4qZ3w/u9+MKHXZaNeXlCPkaa0DDJMv5PkPzadaq2518XWFoFmzZhFggN8aAQauP5ToWkOc9c8666yvCkEjOnOAE+DixYuzU9kxyKhfGlWHxo4Bcr1gSyfBHVKg22b0SFanr9n+0HXrfGDjRUNDQ0NDQ62G1fkvnef6wnHyU7AqCdPTjJYpPBzvhuXMrK1Jtbrl95po5LFqpWxVUmGxrW1LopTb1OPzqGN2nSe0Trdx22234Yvn/sHQc6jbWEOTbpZXBMOySXBe1AiHsyAmwXtqcmc+Vvzj99tvvzVO0My/MiBB3muvvTZUYj3++OO7hx56qBCl7CyCE5NE4ZQHE12wYAG1N/+XvTOBkaJOo/hXe6iLuuquUTkURURERfBgBFl0HDwJngjiAG7ivU4EjRoNioIiRMUxilxiQEEQEWE9iBrBzYhEB4PHBtDhUsiSwLIIiuCevb5/8pIvf0emh+mZ6ep+v6RS3dXdNXQV3fX6O95n9UEIIYQQAlMJMC5y/vz5wX8VuDpBn0KNxTSFXDyzNNvMH2vgYFgMwQZTXHbbwlkC81aRym10gUbQ1puZN29e8EihegdYL1y4ELPHvLMxF/wj0W6K4ruQCkUkjpG2hiCEEEIIWZ/Aj3XWrFkGjUKx5qOK1Co+shaneCnm2MGKx7IAz4cgQ7MGmh7Q/ICJD4mRxrTZIJjv9e6779bWPoxQHv6R3IZ5WGgswEQBjDuAuz/acznhf6/rw4QQQgghKLY46QBjlRB8QmQN81DPOussX2/mzYax+EJ/n+qktUZW7hMc0o76fA6CRzdsQ9gr7wlYXUBolZeXG/AdHvRmQXQMU+r5D+QsMA6LBTw4HCJeH4QQQgghYHOCZkIGfejNRrEGTYLaePilIbpWVVVVa9es1zG8T7G2JzjeCaApAK+BZQgyhaQpUpwEbzqDsU4QYm68Qa1OuyQqJsxJp6UQQgghBEZM0SzXT12IxzYhsvbyyy+HZenSpV6z4PFamyCyAYa0a9asQXoTkxZgO5Y0aQSNwMgNaU50XTJCxoPBXHA8wDzujOBtPl4fhBBCCCEosDh/lHYbnK5ATYIMHgzvEVmrqKgIkTU2GEybNo1TIbwZcb1SrJj/jddUV1dH6c0mqkEjyOmiCM+3rzKv6511me/14yeAu79X4kwIIYQQwk9r8JEybzfC8VLs7KRWgYMExj19/vnntnHjRqusrLQePXp4XWN1wXQoBrBj3+gmLSkpMdDUKU4C9YmpAkxt8qB4ceY6IqLBo/Hk/vojhBBCCFGnnvCZOm/0S3Hlze9pMjtz5kxbsGCBvffee1YX3bp1g/0Y9gGDfYzETJpToGH+VgYpzj59+hjwgoxv1L/5NCOEEEII+ayxXMtH4zDmEilTpEnHjRsHX7TEQHPUoLGbE10RMJslFGJpF2dCCCGEEEiDDh06' $Speedometer &= 'FEvss8Y0KgJVIZs4ffp0dm82Tw0awXT2Tz/9FC2uQUFSmMUzrwoNIYQQQshnbfz48YiWWYcOHSDWwkzyTp06JQaaK4JG0KmwePFieJ6FN+Hrz/imChEhhBBCyGeNwLIDQg00awSN9OrVy5599lnfOeFTmqltABBCCCGEgDgDMKOlVxo6QmHpwTIu3EbqE/5neSPQOnbsmMCYDQrTd0TQP4Tb0oYQQgghBP1c6bPG0i36rJFly5bZ8ccfn+SFQCPw+5gzZ445Cj69KYQQQgj5rEHrLFy4MDanbV4fNPL1119n4Bfy9ttvG/HRNN5PG0IIIYQQ8finmH79+lnfvn3t6KOPzq8IWtu2bZMtW7bY5s2b+SYozliTltMD5IeXMpXKx/3it/N5/t8HEK6MEUIIIYSg5qCe8RoC+gHrb7/91tavX+/EWZ4INILCuOeee84PSA9rFtQ1FIYTaQzHvxHXuPmDyO3xDFC6DTOHjP3GCCGEEEJQw1BjULRRP7z66qvWs2dPA3kp0M4991ybMWOGF0YgZ+lN7sMPWOe0Aizg55oTKBL5+hg+RoQQQggh4tnhfhuDPQhOlZaW5q9AO/jgg5NWrVrZxx9/bCSXkSmOkAJeeFG4eQFGceaL+eIZoH47Dz4RQgghhPC6gWs/LWnTpk0hknbIIYckeSnQyDnnnGOTJk1iVCunQo37Y/2ZH3rKPLDPDZMvvvgC3iScE+rr2Ooq+hNCCCGEUpwUaHEUDUPRg/YB+SrQWIeWYOr77t2740hXThQs116csY4sTm9ClJ155pl2wgkn2C233GI7d+70IUmay8mnTQghhBB1ahBf4866eNhrQPvktUAjp59+ur3yyitUm85qo2FAfLGTguKM4o/uvtu3b7fRo0fboYceakOGDIFpHMQbTHQx7YDP5zqrGjQhhBBCSJzFwFrs5JNPNpAKgXb++efbCy+8wEgXlaY1FNaWYWF0DvuHcNuwYYMNGjTIWrZsaffdd5998803eD7bYIMYe+KJJ8LsLPDDDz8Y4X5ihBBCCCHi8irqkGnTpkHzpEegHXfccQkmvK9YscK/mXpZafhasri9ldsRGUNDQllZGf6mzZ49O7x2n3324XMZKQvPee2114JoiztBWZuW/wghhBCyu6DlVqwTuPZ1Y7mAWsbfR8Zu9erVQfOkQqCR8847j55oWR8kpCkBX0MLDaZJseCk7Nq1yyZOnBhE2RlnnGHV1dU+BMn9hJlZN910E6Yc2FtvvYUwJCNucQ0b7+cPQgghhKAIi43pmSWLn+Pvc25mTlKc1Cm8Dx3Su3dvA2kRaExzog4NYirrg8PIlzeZxUK2bdtmd955px122GFWUVER0poAaUtE01jr1q5dO6usrAyuvhMmTLDWrVvTqBYn1xf6hddRqOUdQgghhGDghtd6BlVohu8DOt4+C7oiZ9d36gjsD2VSzz//vF1wwQXWeHAWZ+6BSMr079/frrnmmqzzuz6SxYhZVVWVTZ482ebOnYuDDQVLNcuTgOdhgnwwyu3SpQvFGE+erzXjCeT9lFltCCGEEIKaAa4RyJhRE/gh5l7INRQGgbC8+eabofHw9ttvT6wR+ZU1EhdeeCFEmg0cODCrA+RFF+ZaIQI3btw4W7VqFUQW05O01YBQC+sBAwbYyJEjETlDOJMiDIs3qvW3vQLHPsN+8g8hhBBC0BXCuzowqgZx5gMtDMzkEu4bGgOBoqefftouv/xyA2kUaPAfS358MxmkIo866qisQphIYz7++OM2depUQ6OB9yvzEbaDDjrIbrjhBrv77rvDbYLHIb4oznjSeEI5O4v7Sc8UASGEEEIw4ELRtmTJEmTOglCjBiBetOUC6AeUT0GfdOzYETtNXw0aueiii+zRRx/NKgf8zDPPGEZFjRkzxnbs2OHzy3g9PdZCW+u6devsoYcegjhjRIyKmnYctc7w3Hfffam6WTwY7ucvQgghhEQZAy3+2v7VV1+FOeBHHHEENEEI8nCS' $Speedometer &= 'kS9vaiB+H2gO8NYaqaxBI6hBy3z55Zd2wAEH2J5AN8TixYsN+KgZ6NatW0iXdu/e3YuuePQC53XGczd9BC6sGZkjfCy/EEIIIQTFGevLKcAGDx5sM2fOZH267b///lZeXh78UI888shc17vBWgPROjQIJIUg0GC3kencubMNGzYsVrVMMYb1/Pnz7corr6SIwuDRYD57//33YzJAkRbxCyGEEIKdmmTr1q0QYeiopG5AChLZsSDk+vbti4wcGgjjoA2fw/2FbXEnKAWh91998cUX7Z133rHrr78+bEx1ipNpTqQvfW4Yaz9pAPcvvfTSUKvWpk0bGz9+PPK8cP8P4qx4EUIIISTO6ENG8bTffvshgAMrLWbdILxY046gT/A/7dmzJ8dPUm8g4sYgkdcjuE0HCM745vOwz9C4ePHFFxtIfQSNjBo1KnPttdci9IiDAO+yUA8WK+NNmzbZ4YcfHvuamBBCCCFkq0EbDW84Dysu2F589tln8UhINhBa+/bt7Y477oAOQSqUpvW+TAq3fzZqh+lIt912m40YMYJPSncEjSDUiBoyHtzY1oIHACa0FGc+HFm8CCGEEKo/ozbwwRvWlN966622bNky+KUGIeZ1A5+HWnhMF8IUorFjx9r333/PCFlYk1ibMKoGcXbJJZcYKJgIGhk6dGjmx8I6tKaG6FmsWHnQecApzlj4L4QQQgilOoGvH4sDOh9++GFwkHjjjTeoKZiqhP5AFg8pUgg7aJNQWsXX+4V/o6amxq666iqUXyUGCiWCRpC3hWqlOMMSw+1UtXQDLl6EEEIIRdAYRaMY46hH6gbWn9H5Yd68efbJJ5/YzTffjOwdAj18De6juSDUlB177LE2ZMgQpEepQxgk4m0IM0bPCi+CRq677rrM0qVLQyqTxKFI4vPDxYsQQgghIKgQ9aJu8FOAvJ0WxRWzclh/9913wSdt0qRJIbXJmZqE+qO0tNQefPBBKykpwT7RTBBMaU899VTYeSQGCjGCRq+zRx55BAcmLIBRMt/qSqdgHmQsxYcQQggh2LUJ4mlBfj43OzEp1Ci8DjzwQEwpgjVHiJq1bNmy1hr3RYsWBePb0047DXPAw74ee+wx69Onj4FCjqBhqGkGw9OXL19ubdu25YFuMjd/33wQG95y8dPx/f30IYQQQggfYcMaaU7YcMDQFpZeAKOiMHidXaDTp0+HTRisOjDBCI8nhSrQCNphMxjLAI+z+OA1Jr77AwuIRVg8VSCeQpAuhBBCCOFTn34qAdKm77//fmgUWLVqFcuqQtPA6tWrMRQd3aHo/kwMFGqKk2ACPJTpzp07mzZ9WXvXR62CDcuuXbsMpHdepxBCCCHoEIHFX9ORNi0rK7OVK1eGhoJ+/fpBvKFe3gACSZdddpmBQhdo9DpL4OwLUzkeqCYQaRRjsSkdllp911q0aEFn4rBOH0IIIYTgWEksDMb4Gng8jlTmSy+9ZGvXrkVELYx16tq1K8zzE2smmsVg7IorrrAHHngA86wwRL1JBZB3GabPGu9zPhe3sYsjnQghhBDC15XjNoQamgt4fffOEZjviec8/PDDNnz4cANFEUEjxxxzTIIBpii8o2BqZPxMLd8xSlXNhgWcJDoMQ6yluItUCCGEELEBPtacx4nH2AFKMffBBx9Ap2BJik2gMYoGyw20vTZlmDM+YewuDbdff/11hDnDSAemN5m7ThdCCCGEoPjiEHSKMp/6xH2f/hw0aFDQKI6Ct9mIQZozgwI8CCIIoaYQZ/EIKbTbYkg7nISXLFnCFGcoGDzllFNcGDRtCCGEEALBFpjaxjogttoCU6ZMCbVoI0eOxINFl+IkmG0FkcaOSeaBeaD8OmsBBnFFhRxv40lhGHPz5s1hBFW7du3so48+8vuygQMHGsBJFUK4LzHgPleFAJ3J/X1fSIwF8DkcK5P9+xdCeDN6LISfKx/Z8s9vKBzzRFNb7JPr2FILMzyhTUDRRtDIiBEjMr169bJRo0ZR' $Speedometer &= 'zXq84s3q4sGQJYUeI2JY83F4nzz11FM2ZsyYMAKCaUwKMn4BYyxV9+7d6ZlixYoQ8eeQJQL4nLCOM83Enof8xR0/J2LvrHiEkBdZnJ2KP3P0Lc3J9TfeNzJnmAsegykDCxYsQINAYqBYI2gEviMTJ06ELxoOmlfRVLm8n3UrLdZenHGNEz1nzpxQ/HfvvfeGv+lndvFE0lqjvLwc/4nCPoUwOXH7iRv8ZZr+zwcjYe694ssc3xn8TvDvGWsuQOJMiKyuzf56ziJ9LP4HEnQAr8H8jsmZByozaxBnFIn+c/7kk09a//79+TIJtM6dOyedOnWysWPH4qD5CwEPKtd7JE5hxpEzuAGfdNJJhlFTW7ZswRcwhRlFGl+H/zjYjhEQIdwpHzRhalNH2h/r8NmJPYTSju/kxjJ48GBeGML75fv0i/91XidCSKThs8KoGIQYbrMmnPYX0AH47OE5WPBYzv5+HNHDtZ4/MDGrE+VO0CQSaI6rr74aKccwNZ4nivAk1gXVOaFNxvbt28OFpUePHlZTU4PtcWcmhRptNfCfiBefMCh1x44dVuQIgcJZXxdCAVNwQhSRc5hUUozyosJoIX7kEdWpCpFdhJq2VvQbxQJw3e/du7dt3LiRtaCMYvPanhObLUbxfNYM2+DigGxaZWWlDRgwwCIk0E488cSkpKQE0arYKJZLvdQxDj4OOgahYmo90pr+5ADve4a1/4/hJ+PDE+2uu+6yYkYIFvEy4ozF/5ApBPA+Zs+ebbNmzWIE32bMmMEIGqPsQajye4nHRgix5wAKxyqydhWfJ6QYb7zxRquqqrL27dsjIBJnz3I66omfV9xnShVD0idMmACLraBFJNBqAcoVtWgbNmzgScEBRLiz3l0cU6dODcNOR48ejYaAsI84FcP9U0XHRnWAJxDD3YsYIfiL10/fgHDBtoL5hc+6U5/CRXQfa/7i9iK1/jUyQqiGld8dWDCXG/6j/MFzzz33QCiFMiSQy/Qm/p6vdWMWAC4S8GTFZ51ESKB16NAhOfvssxFm5Bef/2LM6tfvokWLrEuXLlZRUWHbtm3DNnqdxcXN8RczR0GwAxS56TDyYe7cuaHDVAhTF5YR1pFwe8ph4TBFqI+qs0vVp0X4eB1NTEIIXp//z96ZAFlWV2f8dfag4qhsaiKuUaJmBArcZxAUJagTRBNCMs6MaNg0bAbMGJCwxKjRuAuCa9Ak6Ghwn8ElagETHRZZBMOmLIILaNTsS2d+t+p366tTr6e7i+73Zrr/p+rWve++u7/3P/c753znHMaS71jGzHXXXUfPSw2cfnx961vf6t69F154oVzxOdFdTJ5fL51lNZ761Kd2GKQBtGm4aHjR7C6Q1qrij5zhz+uvv35AiPSAAw4YXHnllZkwkKGZJDYPdX/6J6LDPfXZrrrqqsGKFSu64zRp0mSgYpNHUjki0wE2jCWVcT3ujGocSkNQ1AHl/Bl+rM2R6zbci7351C01K9z9vH+P5/17rimvKa9HDh/Li0WaNKmdedasWYM+6I0gJEtw7L///jQrx5vGeHF9zbyeVvdYOicpTo7rn/zkJyQHzMR71gDaQx7ykIkDDzyQ0KTKUZ4Lc12SAjAeblcuY7fddhtcdtll2cqhEnhZn2Asj8PnXuk+61nPGtx0002DtWvXYlGruNvoatKUa4T2zMiS/Msy409lSGKOHmzmjmEpC2yDUYUwV3kOmfgOBcrcjGz2kc+Ct5vt8rPLGl3V88Vkin3qCC1tv3e9usRtPLb3aUKB5/W+meCsqZfSQ+eyoHXBSpMmcr0ER3DNNm7cmMZXFpHvx9oVV1wBL4zaZOgPxnYaS2lQ1WibOsd1Lttrm6nznj372c/usEcDaDMQOCB40QBciMrX+LGcD0KYD33oQ3nAesp86InGpyySJ4jzxUAWCcBsw4YNg5133jm9bou+1VOTJoIJDRzT0x0j8tGcA0pY1jPtGHZb9gVosZ6xzjyzr5ly3cc//nFL4HTg' $Speedometer &= '7Gtf+xrXg7dbT5Q6gimPxfFV6hpizDXA1B0CO0Gcuseaiij4fB6CL59DlgfyfgVxAEzPnfy1RddKrkkLdRLxOvnkk1lOfZCgSzDlu77jqB922GFSl2rSUl32fd9TE1I/bLfddgPkzjvvxHvW9d2coTSA9oAHPGAChXbSSScNkLR+88e7//3vD6hS2bmNlmqGJ9JzVuuedUVrP/WpTw3Wr1/PcqLz/riLXZo0cSxkD9vkYUlRcIxqsQpsEpDkfnLZ0rvE5+wEwnd6u1TajkuSgBjnKF89Xu7nOfHK/+hHP2K912CYViMNkNTvv9dee00ZjhT0pQEnp0bln/fvNh/96Ee5xpoB29d+XOjSpOkPKQ60V3Q8ZZQM0aOtrslC82RUEy2j+xHrBF+OUZeDI8u8vvO9FnqAA87AEqyo0lo9bSGlfxLEfM455wxopl5fBCp80PQjHvGIviOA4ra1AG1yPrbffvsuc+Pwww/PJIHKfdO6XszdBJo00WumoYTnSFAmaBJ8OdbsiauyHFrXiG2sNea2it8ngGLuedARlMWo3nG8a694xSsGmzZtEiACuui3m0R/j+0LwOtgO7b3eAkUq5es22/vvfcevO1tb2Pu8b0Pt/Ve9ChWL8CiMASbtB6ct99+O+MW77mgTO+W46NWUkj6QZ+Nefzxxw9OPfVUKQ3pnEnaQm3d1h//oosuGrzgBS+gBBdjuwG0WQox50nSby0uyxQ9tfyx6JlF1/mBIpgSUfvCcD+WcZWSmblkyRLW5w9cX0oNmDVpEkBDMMNnpRpHghE/1/FLWFJA5zyNMPcVSJ1//vmSeAVRAEQUvYDRfatnK8OdWO/qhqE8t7TiteDze6/NZdLza+9Atxeo8QLg2lmXnJlq4S9kadKkjkPe2a973evwIOsdd7w6OYZzzDCpf6j43xloj370o9nO/po5FjXq/CzQo8d2l7l50EEHoTRaiHOWgudsgh8DL5cKT4UW2VMkCeCiTB5Mbf1kKIMsT/goWLt40DJcUcmKzMufq0mTFqJwTLkcpPs0nJy7TYYvEpRlYk/Oc5neeMy1hK2byLKArPLAhnrSKx2itoazCC3f24PXbZG0ygmtChb1FnpMvvPYL3rRi/I8lYLRf14M0qTVQdNRgmMFL9ZOO+2UhpHj2akHZkpmcVNlYY899qBNJGPIBKT0xLMuxz1zOO50B7on4KwBNGT16tUANLI1UwkLzvofZd26dVrnKsxUuvTX6rJBLrjggsGjHvUolWNyUTL9NpV+eAOaNGnNjh0ristaxtkGSoWYBpV8Mr9XInRYgVQNd9bQqIAnj6P3qxLzM7TpNakDWEZpO/6rJ897N2U/C/jm/eEhzOciRy6fQ6FtLHxp0gw8aQ6OJ5J9iJDRSSCNq5qlmePRsZaAjY5B9POG9O924oHKYweYgSlWrVo1uGfSABouyAl4HZD5Ki8lQxj77LNPx0VDMmyxww47dGj5xhtvHCxdujSVY2Zn9uRdxf2VbSDMWes3ZZi2Lrt9zmsNJ5ddn9v4UnRd7bc21CPpdwqtuHK/Knolajq1MtpG1U309DhuVJoJ4Ajn5eecu5zczgrwmKrU9XrhXFdJwP7fkmdWj5VcNbdh3Z577um9pTEo2Bt6X5UzU0FnpvsjCcpyvljESEjVSwtbmhitqkYK4+3ss88mUY8EwUzuS4+140awVfUMxW0758uXvvQl93O7PC+h1Q4rPO1pT5toAG2Oym4QZ6YEhoosLVqFHzjTdk844YSuUvFLX/rSRRGi9Jk4GOoLxGKAAKMkSqdHsvYozVpNSZTWCvK4NdNPBVw7NeQ1UhPHys4VzCHpYanZucwRLTKSROZdmgiEEsyrUK1Vxu9m79sK2uWEeBx/75l68FToerL8T2YRWIHVlPvnf55EAgEZ1wL1QQs+jZHkslmHqZ6/yYwMyGw6Xz2rW5wWtjR5znOe072vDz74YMerNAPHGPOkGvTvI4X3AHVMOcaPf/xjuef9+L75' $Speedometer &= '5ptx2MyB96wlCaSgOCfJ/rjkkkuS66GilRwIb40fj3ZRXS/OxS4+pwQ/9h6jATx/XpZ5ph/72McYDN3nLAa4cuVKnq0pz7TRopQAE8X9UvlKtO7mFSzedttt/e90n/vch/PhwWBbQkIAR/Zludvu3ve+N65v2m8MfvCDH+CaZl9agLBtB/DyHPMrTWrZGrM4Dz30UGYJ4uWJVBI8n/k+Q5gzAmkCI4+b4C5DmAK0any4Tab25zEReG7cE8ct+xu2nOr8EpFn8ty81mH9CReNLkrgntygJk0YYx/4wAcGxx133OCnP/1p0gT4LvVGtl9z3r+3dtxxx8F73/tegF8P7F74whdqmE00gDY3IjKe5EVArbInPelJ/Q+lCAxcRrSEF4sCyHuFpMwLxRcHz4JqyQAiPlNJ2RdT5eM5GFifLz3PkSGml7zkJYM3velNnCvLCPQDAlDNceH+nXLKKXwP+LIAqNfM9bIugSQAjPP6wgSUdec566yzqKMDQASwjRCkNQ+IwD1J/qy/9NJLUXqUp5AX5v+ohvb6/ZUPfehDfamOLUlW5zfEnp7gPH6GVBJkZcg+M7f9vgjfp46Z8vxKA2hblPydhvVEnvb3X9jSDMDkmX7nO9/p6hdec801juc+CSlrGOb4R7I49oMf/GD274z9b3zjG4Nly5ahb3AQNIA2x0Il8cnNEw+aB66SF0BU68zw16JRgOm5yoawCOnMZLr4cmHiGeo9Y6ox/1Sm+aLxmZuNB9ET4OxvoJcEufjiiykm7IvRY7Cv7W2GEs5rx4dc5/LLXvYyqkCHsp9HaZL8sRqeFHRRMd8syHwhQ1EAhAloDIkaCp/R78fxsyVb7R6i+L3GSkjt+efcdku+BCqQYj7d+VnfANrUkmHuHNutIHiTHBc145loGHQl9YV1EPk8NIlAwZiH9vSMZzyD/ahRyDJRtrkcaI2DppASS2jsHe94B8oSr0vlWfGZ9dnLq+c5LXTxxZMeMHuZkdKMAMgQARJ/dIEZf2itEl+kTh4z+wzqocQrxzO3lo1x/29/+9t4uvIYZrdlpp+Ajs/JLeMYbFf5blx3t9273/3uwVFHHRVek3mUJglEUjGmRwwgloBDYEMYtIYM3U5QP1MPcY7lDJd6HM+T3Dg9aUyGZWuJHRS/4IzjJBid5vyzBBcN4KfBltzULU5NFgeH2gn9b7V/EgCodVZbODG5b3q5mXg37LfffnxH1IX/m+BsmxI01LYihNRIkYX4T79Ma6qoAETOABFCYIvOOpPjJbEZoQSJPBmeTfVkGbYk7Omz9BjJJ2LZEFf1npx++umdlw4ReL3nPe8x1FWtpAyTeW226slkhNogn++yECHtc+Anet3zKE2SbIsE9yqtWL73d3LZTgBm5lqcclZZ0ljAGAO1oGztnSl4TE+X4rLZpnrAihd6WIkNzzH0/DOTBvAVx7iikba4pXHPsltHjmWyLuk8gIceuky2jEPSSLdVGziBfX/4wx92RenXrl07UJoHbX6ENPgJOGh0AgiFm+EyQVpa+YvCAvOlWLMsv/vd7/riEQgJjmgMD28IQKtVC9+PunN4xTpy/ve+9z1q1eC5pDm9TbL7jDyEcGnll7zzne/kc+/BzEKi973vfQdK9FrM7B3d2XLRkmsoWOAaSR4Ywe/bhP8NRHp/QzlpmQiQJF49oBSUZT0EXT77u3EsFfNM5NOf/jQgTWU8baYgy16P3j2vsRKPiwjwUncwTur5Zy8NoFXAjI5Bv/AinXKCLN5kwUeAKt3BCIrRF7oLwSnDOeM+OR7Zplv3kY98pDfkX/nKVw6e8pSngB3m0XvWOGgKTY8naXAK2e/5z39+bQElEk8LeFQtm9LSHmY1+lkSf243pzF875f54x73OJRghm2YA5L4s0u0ryGo/CzY7aqib9y4kRTmDCl1pVDe//73uy0FA8m+ZP9+mwwJLV++nGSPrijo/e53Pz1nWk587oDiF77wBZQ3LmqAmtvlb9qlZu+6' $Speedometer &= '666D8UuTJk1qL0S9rJRJQm/gaef7r371qxiGtuhx/PeTYjiL8U/XmM997nPsT+0sDMYE07VXas8tPOKIIwZf/OIXNSgMoZkwhV7Kdb1uude97sV3Xe2sxzzmMV3Hml122UWDpXp/OFc2xEcPYuBqnHLNPA/OY6SCZ6CByzF4v3XXcNJJJxlB6HTkgx70oKqnfectuooE/GaEMGme7rtAowyeOtUcWKYm2ooVKwbnnXcez7ABtBEJbs5JyMjXXnstGRmCnFrEtljDo5McSBKT/ZwAsjZtngvJ4zH/5je/Sf0XSlYIqhjYKBM8ZVxLrfckkKvhB0iWZOx5Dr0kuJ5Jje6B2F133UU5DAePWXOGVTte3AMf+MAMiabCyX6rKKyuKe6HP/xh+WdpNXXJAm9961u3klBTkyYtTFUNRsYzoSlK9qgz9LyrR6qRWtuJIQI+2/fAQ6WfouV+FPd74xvfOHjNa16jvs3sY/VjJpRlyFpD0XXu2wHFz3/+84Pdd9+9B4OK9wp4ABhggHr9nod7JiNdPVtD8joZ1J1sz31cfvnlXRQjE7FqmH+hS71XQD7vHqoFIPTmJInQ/+IjH/lIfoNRcs8aQFOOPfbYyc3VgHk5C4jkiFRiMevGYT0KNByA6T3LsiDzUmojwalzvFKcDw4OnfyxEFWGtTggc4DdHXfcwT1Qg67LBEU8lt43FO8555zTWzl33303Fp8KTEI2yoZyH2zLMSsPaEq+4Fe+8hXAIft4rf29Hn/88fLfmjRpMmYPhx6z1H+Mz9e//vVSKcyWtWi2gMvjTHls24nBL2YOWGL/G264Ae9Whq0x3NBzAivLD6Hz+L5mu6uHWDZj1xBaGtpee8dxOvLII6v+HVx44YXoQ7w8NSFC45Pt5PkmxzELMWeTcJa77d/85jdz7NTpi8oz6++Q73QM+Be/+MWdt+zqq68mmsIzg3eGUcAzGxU4a0kCKXiEjjnmGNL3KfWgRZFetFGCs8xIstYXQAVQg4LyOiRVD0sTnhMF6YCvBGar97OO0ABF/CDYw+9Acbp91jqrYDc9gFqltd+hFZ21Tj2GoI92HvlbJX+pdjNQQTHoVJqej20ttDt+adKkiSBEYRl6xVve8hbDdY7bBEKZBMRUOWvqI4GKmfpmdWNEUphUvmvnUSHCkokdeqM8dxY89VpNYkkvvR1PsrRM5TcKHkiWoiwE36kvM1s9+cGCttpJQQBnqNSMe/QcxVsxVs8999x8b5gctuCzPLNKgL8p4V+4aYTQea+xjgoChKXhQYe0JIERCs1RJyAeUyATMfwVIggaGcJPsj4ZZ094whM6q2ffffflWpIoX1sjzRlAVOFYWiAVCYRbUpZph8EfGOvDPztTKitBWfY31PLL7VhPVwLmCdC8zwx/4DlEuSIqMRWMPJBUkqZNY2lzLu8pgff40/CbNGmShactSM1YxosBlcJuDOo8DFX1CuMbTix0FTxcbCclQsFrJqjT8y+Qgc+apYAAYnq7BGR2HsnyTGybxl5NXFInZcN7k5YInXLdHueWW24BnHmcarRazFsdJ9jweWXyDedQ71qfry8tdf7553NedaE6edFwGzUC/M/5DiGc6TsfjxqldMAIrGsetDF60dasWYOXio72Wd07e1COhEiZVe8hL3Jdfr7ooosoqkrBveSHlSay90hS6aTHy2cB2R43MFktKACei3wMFavXlqU4DBEwV2EwN3TLc6etVnrrao0aFSPHgHvmPWs1GxLxnF5LeswMvTpYvSYU95j5F02aNKmttQQNUCPUjRpajFkoEHg+Hvawh/E9IcH0KNVevB0Aeu5zn4tRybYZJlRf9d6tN7zhDdlJhu16/trb3/52GmXjyec6ev24ZMkSwVUPGq+66qqJo48+evL73/8+Rqffqz9Zp4eNBAgBhNtxr96PwI6s8+SP+dxymf1MIKjFfPnc8X0PP/zwPqlhsUgmcFQOtyFisr1vvfXWwZlnnjkYszSANrFZNnMN' $Speedometer &= 'JvEGgZohi8qBCA/MKOL1DjB6f0EizWQFlqlqjLePgWeYMAffnABEs4iy1IAtmeh96TMxLJiWSBb1ddB7fSgyQZkeMLYBhJ588sk1rIw1nMqKdWZhYt1W3puWrtdTK8FrVeolZb1AjnsZLx+jSZMmktfVO2kc6wXSU4UOIIkIr4d6h3VbymqnFhZZ+5RQgJbBefSmoG8ynElpIc6d7wGWKZxNeRfCoeq2NPrMrBeEkYAwSYs6iqWmt8vMT65jhx124FowwNWr/XEyjPq85z0PEjuAVMoGzwKdaARIkArI6MJz22+/Pfua+en9AB7NAmU/Qd2iKmSrvk/vIxmzVBQ48cQT+TzRANr4hUE0sTlkN0kJCLI6/BPr4RlVhgt8Myy8TZs2cV4HTzewDjjgAFz92YVfQDJnAC3Dj2nJ8vmTn/ykn3XdG/41bOD+ycEwrGinATNAUTYokI6YW5MhEKxTJLOmAHZ8jzJlXvkhCc7SfS2g9Phaxc7xSo4fnDVp0kQel8AJXUzYjzEPLwgjVW8T32VGYq2PVpMG8GJRrJR9EbloAiISmgA/CBEVsr4RdBShU3jK73vf+9R5CSQz6qI+8tyEZ9HjRhzUhUlpMWTLXAM8ywoRkkVfql+Ty+v1pJFM3S62I8mB7fK62LZ7FqnzF5PUaFMWqoaP/vSnP73DBAOlcdDGL9S5ufHGG7vG3YiFMh2EMxAtGQdXDsCqPBwczgFlWEcokPT2MGjJWMQiSguneq/m1MLwmIIgBrPWoveo1aiSEGjlvQrUAFt77LFHx1uj/hxZsxBwUbo+5wTDKpA8vgqI8wBk/V1UOvXaE4AhZOe4H+s5bpJ6mzRpMn6OUPK30vMNYAJsAHauv/56yPRwqRjLgCw8UdY+ZJzTKLsrl0CFgQ9+8IPsj/dL45dxn1mXGHCAM0n2hE85FsclNEqoUnAmKGQfPFZsx0QmKPqbdwheGAqbDnbaaSdoNEmdYRKQURON5fQWZseNPivzsY99rMa426deFGS4H4CSYqyGaWsRV0Aq+4ySY+19ea/5nvBzfTcqc3KN3n+9DoU6nJSUIvSrNA/aViJ0p98M0iZf+9rXduUjHv7wh2dX+xnHtwV1tY2Lx8jUbEEFfAAGMcupAFAYuOMZ6KOQ9Eg55zqoFaQb3G0EbygtlAdd/63WLFdCnpfKSJHkKihT8aQ1ieLjO4mthEjZx1Av1eXhrVVAlnXYBHEUe6SlEyEQjuF9mYyRqf3jlyZNWi00PUX5EpeXSsgQ8EWZCvlj6AfA1FQGJ8fTayWgSf4qQM59Kl+V7dHRn/3sZ0mSUj9RpNtkpppkBU+WY3AO6R1ZwoOJ8KPfsZ7C6YJG66apb9WvFazUGmrZDNx2aJnpP9bepOr7bMWX14wkh7D26r2n4rPP97rHhZdIohqOGrBAA2hbn+DhmdicOTm5atWqjpQf4iCaSYp45UFUUOOARqHATSAhQI+Vgws3K14miKeZDj2SOjH1Tw1AyjZPpmQ70LRimSSnsj5baXCvKh+UKgrHfqepUDM8yXcS+QWICFYwPBAAGl5HPHQCQ86B8mSOlUi6PKRaOgpwbZwzLE75cQ2cNWmyFZVB0KuSJHk8VBiE0C2keAh64FRpnNWOKIi8L3QEc86VgIdSC26HBGDgGPRuxuOfNdjkxVqyg0nqB56+pHvUemT2JXZdlt3wWAIaAIPh1mn7k/qO0junvs4og1OI9zUS8O1905mB2pR8rnXwstWgYGoOJKlBrrKTjVEeT9QA2tYoVHCGuE5RxFe96lX+4WfUO68CM/9sdSBaiPXAAw+k7VFtntxlSZ5xxhn5Jx2JxVO5DRL+sfRQgNyHQEmOHJ4/rpPJLCSBT2ZUWhTSLBrakGAFw/vDW0k5kWyAzDqfSV6LAAtXNAqbrFLOy3fpmVSx6YUzdCBvJQE3hF+Vw3ikSZMmJggkJ0s9AnmbWmh4mfQKIVm0tdY+NPsyE4gk4WfZC9o/yT3LGpDI5gxMDGUT' $Speedometer &= 'lNQvHEedyDp1VJa+AKTBHZOqYsKTUQPqbuU7wntQ11kUl+UpPWYhnluAg1eIazCUOSXdRn09ChEY0U7p4IMPRu/jvbQlVm2CzzPm2c9ZEldylf09CG2SKcx8OmmdBMYvZFBO4j7HU7N06dJZea8yVJf7JbGU3o9YDigdB5lE0M985jMQFPvtk5cxKmGAG67lvGS0wINDYXi9KhIBj+DTbKusVF3bNaU1Z0YmBFgGbBZMBCjDM0EcuHrdJLtm8cfkW1gzLStvI9mVwHRzauE5cMcrTZo00chzQu+8613vohxPgh2BWKVnZOajHiuzFq1nRmgSHYCRB99sWIN72slRTsOoiPUemaeB53p1omV7nNT7esgAmpyTxK/kXFnnrCZhwSWDU8fylADNz3kPRA3233//1MUegy4J3TOt+82n+MxIxqC/s+2q6FEKYLP3smLHHB0G91B8/lmM3Wuhm8zW7D1rSQIpz3zmMyf4Y1OoDrAy00KwWkfZnsiUZv8UADCsBnhRyTkjlPnlL38ZcFab9mpZjKz/p+fLStTeA8/BwYwiqlmuWQiWKT1brssedaaJE//XK8dc0CagQ/TeuS9zlSJTKhubGmNBapHWkhwMfqqUj78PXZMmTeSmqiv4rMFIUVe5aW4jQNPww2POBADD8JPjxWQ/yrVr15KpT+QCAxmgpH5Izhp6AyPaIthmkDN5HVnP0Xmt+C/wAgzh7ee8lHMSnGXbIcKo6iLbSskjk7iuwTuVzlK3SfHwObm956r7j0T/CTihEOnJNHTNO5Em9kgkoqXenpPwpr+xDdMxzpcvX76tgLMW4lRe/vKX48FhYOD6nBGCTw9MgjQzMlevXg3pXwuxt2z22WcfSmhIYnUQjdxzliFAwZphB9Zba0iumZwLsyKR5FDo3fKe3FZirlZubc2EGBLdsGEDygwOm/sbrtAy9ti69t3G9V6Xk9cIAKRRbnA3xiVNmjRxvGa0QQK3egipAEUvG1xUDF25a0Qk0DPM2Qb9i05JQy2BQ04ACMOPgjGBDXNe6gA/jp0JVfDU0JHUNnMik5Pt8BAJPjPcpqhHszOKHsOLL75YT9JQzxli9CHDiABWdGRGHLyHUYu6nnqaeCbpSMM6BcoPteBoR4Wk0T8XIrD33gltA9LJCN52pIU4s8H25OYfDw4C3eyndQFX97NAAm8Zf77LLrsslQLL9LOk9ERahf6BDDHmMUfKBRHMkN5OjP68887jelSIqWDSEsy6Oxme9B71SBouQGlybDyXfJfKUw8k2VOQSumdauuVypXzHO6r4kwPXs+bO/XUU83u6r8bnzRp0qTSQ9QTeJx4qRvWdMwuW7aMjE4M2578//jHP17DLzm/tedl7dnpskYzmeuEvdw/OWudQb1u3TqPqR4amqGe15IgyjnfqR+vvPLKwe677y4tQwO4P/Ztt91mbbi8hwr6+A59iZOBMCfGLd+noYy3jlCr1ziWlkvw+yxdwjqFBDCoJ3Z5kI4yB6BSGgzvdtsVkpCn8m8etG1IUAATmytPT5J6C+LHEpKLYOZJDL5a6oFl3OkQ4RkkDn7LeuCZo7J1lnjIP+G8cKIqKZRlJQaw4JJ7oKQFg4YQQWZHycVIrsWM0pxz2fPYMqVeE+uwPpnwaAKUzdjS0hXsZfaX4vENd5hBlQpu65EmTZoXLQ0vs8fTw+7y+vXrSTRCT8PTgstEvTL0FS2g0BnqFJpg8726ZUoPltvDUUtDz+8t55FV+ZkEXLXUTwWehiyZ18zLBGMmjuV58cYZzrUnKcuU9KCrAvQZC91y/Z4jgarXRlcFdaPPe1Qi2DrrrLPodQnHOZPLOofApZdeSvIA95aZvQmimQ9zLmQBXnls+a7m2ZC1STktwVnzoG3Lcthhh02SVUi4rWY85jLzHPR4xsg6qgLvAeXCn5N9ckDPowhsJNmqgNJKdLkqp1oixO9mUwKkHl9rczYud8854+3Ts5ehZSWvZ7zSpEnzoFVOK2Bm5cqV' $Speedometer &= '1DFMyoI6g88ae4Yla/iSbc3Q54UNmKKlHwlgvdf9yU9+MiFS9+UFToiQ85vBafhQfW0/T/YHDHJ+9bjvAfbrAMKKFSsAWGyL58gMTUGjWZs4Acx6z+vPCIue/xoOZv/UpyzXQt4CHTh2LvvdyHRg1bm8V/GSwgdOMMuzgPqz1157pb5P76j/maHODAFoPR9GPjXszj333AWg9BtAw/U8Sb0y6u/QimmqAoGsk1CPFcf2SBbGO+iggwhrYhFVF/yolGB6+/Lctf9mze5xEM/FuYeum0ZUNMlVy2uvz7Fmz057PeOXJk0aSKtJVoClT3ziE+k9y4bqgjOWM6lLQzQzyZmrrwFenoM6Y3Qa8Nz0HobaIliS2lEL2dpb2HXppUp96bvB88nhxQOId0/QgaffrFCOV/mztbWUAM7PRjZcV1tK2WaKTi1DPVLzKJbMSEqK90Q2JVxjSo9kggVzQrF2Y3D7/I/4e7u9IeYaHZJSRAYrx6SG5qJQ/Au+iSE/JH8QXKL0g1MqkdE/FRmgVLtHQcizUgmQJEB4MxWGocJ5FhVI5XkkWMt1U9bL0XJRZhMqrGAovXizkOTITeXZS9BWK2lvZeCsSZMmyR81S1vwIO80PWZMvPSNDLh9ZoEqmUCUL3g5YCQQ4FVCbCmnVwtQobdOIIb3SzDkuQ15GqpUv+c1CZK8R4rJpkeIjEaN9/T8C0RT12UGux69bAFlYpfOA99F8K7SIGc+ArGor8DWa7CRPWVN6NHsM5azR6Ie3OMahs6OMNkVJulHCUJ5tnhRiYgtEHDWPGiKWR+T/MHoMmA2kIM9uBO4T62fphUDJwLg5h+shg9HxQFIIGS2EJYjE5YqbmUGcRZ+rGGDYeBmthaYx6ufp7322m/T5Sq5Xb3v3L+ef7zSpEkTdYmgjZczSUS8tJkygaBW/Ven6TlKEn22d0u6g2R8vEoCKOgp6GzrQQrm0huXfKo0ArOfpiFUxRZPAqvNnWvI7kydDC+Zd4zZ8rVvZU1uEIh4X7WsUXoS4UOTAJH12zzvKLyj2SVgym1I4DrzzDN9xj143XfffeGn0fUh9XeCY9+l+fvKS4aryDr6si4kRd88aMqxxx6LB40q+KkQROtaLvSmxErp/gy77bZbl0683377OXBywKkcHNDzKg5mz4vlSf0ZsiNRgGT8GDZQhoEzJqVst8VJKe1PZu01y+UKviqAS6klQJStK1mgSZPGQcssdsJRNEjH80ExazhpZMUzhzLifmkQJ6DRQ4VRTRkOw1/yuPgMKd1lhIQoXvp81nPH/szVIbaIq0DPItkCJrcRvNkzlO8Ba6nTEIDhHXfcQRtACnVzzURd2E7PoiE9n5dAspLl7Y8Ml6sLE5999tmsNozoMUei//QEVg9gPTfvThrc+x5yGxxB8NFwgHjvTIIztqngzHfXaaedNrj22mst4aE0D9oCE/4kk/yBvv71r9PEPAsrspwcBJA6g4yBXWP9Ehh142pVjKxK91133UWaMRyIvnAsQlLDIYcckunhWwJl9fNIOXRFHKQCsOSBTMdDG3+4s0mTJukN0Yi0x26Oa+a1zEUta5Fgz3VpoDrms7cw09BrIvxp9mRNkNLAzpI/gjS7n3DuW265hTm9gXl3+A5IHTu06r/3TLmmGhXI5C3bSnGtkuN33XVXExxyPzPobSVl1GQU758ETkxZmiSrB8D9JrLjfXvv1JqjfzV88GFJbNWhADCjfAlFiimRMtEA2sIVK9xPUvWflG76OEZbigoiqsu+pjb73UgJuGTLvPrVr4YwaaVrrl9lA/gkRu8AUmlOecxZSFWuae3Mtpl7Kq+hCQ71d6gDN69l65EmTVqSQAI1oxPVo58Z3a7LjPrkXWVdMkUdvCUjzX0FeEocM3VPbjMV6ErObzWE8xipv/L89bt6rprt7n0mkKnhQa9rFL9tXo/3lcsCZq4VTyKOBECWz9H7psAsJToyU7e+qyhECzijnAb8M2+wAbQFLrhKJ/kz' $Speedometer &= 'XH755QzUau0kWMgBNjLvUoYLatHcJz7xiYNbb721Zv+4HxYryQyEEf6fvXMPsapcw/ja3TVJ7HI0pNA/DCI7dkzMCyUieSnTLmpJFuk5VmpG4lhW3ijDHEhJGSWNrhhamHTEg6VkBxQx+6M/TEwksBhD8z+ze03+Pnjg5WOPbpk9A9t5HlisPWuvyx74Ft/7Pe/7Pk9xbsAwDMMepzlREAOnmCbEh5rARnNWDDAjchKiGlCApt/IniANUoTnxQCcbA+itko9g6BJR2cotYWkydtRcOYADbq6ie4Sii4RnM3YGFl05KulNlmh5MdUNEsLM80LCPWBSAnn10J9b9mypRg0aFCWLqhVGIZhOEgDMdCJZEJjYyO1asmFYMSIEdSuqbYuJwDyLEVVCYZcrBhQP0cXZp79wD1i+/btdN6m80WYzJ8/P9USrl27FiHfdhugtcdZG6HDUl1dHcWMpApjgCMzXVH1KiBtExVu1ReIQVORKI0KpC0JzqLhrgowdT5QypYC3AMHDtR4h6NhGIahYEekQUyJak9Qs3jxYr5LYupz585VIFbWypB9KyA+k+dIMJ6GthKCwnyvEqF9+/bRmEdHrNLOuCrQCUoKtD0GZ2bQhNWrVzfhywb9OmDAgGghkise87nNxR4J1lBqRj2Zz7ENPO+GlOgi4Fi/fv2oVUMFu3YZNMMwDEONDM05yJANwvNUzRTa45eJ0n9c0HOfmCqt5iJeIsBl3QMANdRIZhw8eFD/A7XgpGWTNdSRI0cgIyjRQeC2PQZnZtCEadOmlZCqmDhxIgOHQazgLFLADK42pa8Fgsdx48aJSYv1AmyxPV32I6K/Cc6guWs8ODMMwzByPbi4kEe+hOAsNjKwBxiro0awZ8+eAqgzFSg4qwb0uyTwrjmNEh39bv4mGEPUlg5PyZ8gAo8fKeciKN+rVy8HZ2bQEihCxFA9aZ5t27YtauPkHTZtocYtZgwFZvzGCiGyZ3oB4z4a+sII0kygFdK5A8MwDEuZiERYuHAhaU3VmvF9rj2JjyidkDSPlevG1LFqNTLETt5mvZg5d8mSJdSeMddxHUFZqptraGhAdN0BmgO0BFYXTeTrEbNdtmxZLg3RpjUGAC9QRA4VkAmxtZvvpLwd7aq2bt2aKGRQ++yZYRiGIaIgsmRog9XX10fRcKVBFcDFbBAi7eh7Rj25qulIxuepliw67bBXUBhLhjgmQWPm36VLl0IulArBKU6DAQGLxiCBbo2DS4OvtaGXBRE/gjOtkrQiYR9XIARubEBGvTt37mSllI7nkh01C8MwDCNmSiiqJ5jJS2OiS0Hepcn5lL3E+upqinzHEqFcdFy2XhyLz+YzXZxYMVJyVDY4c4BmwFqVRo4cCd2KHYWKKdNe3nG55ZEkOSqFivgVNOU2Tpj+TpkyRVR2NA5Pm86NqxJA/p68fu/eveWGEEUSa5hFMwzDMMRQqbAeNwO6HHMf6Cignns3A5rOMDUHupcW9Kex96uoRk6ITQLR61TzXLwnYrb4SA8dOjTNwUUzcIBmMOBLPXr0SEWXJ0+elBK2Bn4sdtSqQ6rJldQOqNBf8h2xQ4dnUiMg+yltZU3COa7zMOvFj7Nr166qN4seabUdnBmGYRjKmsSMClIUpC0l9BrnhWhlpc+aQwjSICK02FezgL7Xvpr11/yOaBXF35AbiNhSb5bm3uIMcIBmQLXS0Un3ZN7KrNx/XBVUPIChd8W2RTsQ/OroXNm8eXPqrhHrJZoaxLoDsXnsYcx27NhR9OzZk/vrN+n3nSMelYZhGE5vqrZLkJH47Nmz03yROwNorgAxIwRQ8KfBQL6eXNOaOmm55RfAMJ+5ljm3IjhAM7p3715iwLDKmDFjBsFOzKdH6jjzjTw91GEZV0OwdGi+oPqvFRCb7ivo+boWDBw4MHWdduvWTSuhqI+WU9ZFbcMwDMMuAlGYXHMQXZzMWQrMotC5IF3N6Hu5fPnyYubMmTJ9VyF/WcWAlkKdmzFA' $Speedometer &= 'RBpkzpw5ac4tzgYO0Nw0gHbMmjVroJGV2kxbNAoXOH42WjHg+PHjiQE7dOiQBi9b9OCMDFo6RzTxsGHDklJ0ly5dIrsWPc0ydq8GYRiGYWgOkAisiIJY8oL5uGwLo7yFWKuYtuR82Qgyx9E4wL1bVSctqhBQkoOkBsFh//79zzo4c4BmYJVUGjx4cDFv3jy6Ixm4bKwq4ipFA76iwSmdGszOUfo/fPhw7pWZr5A4LnaMa6lVg3FDlLYsm6d7gBis1SYMwzAMBV6xcJ8NqKwFwXWcA5gnJMcEKcB1+XzAZ80bahxQ4NaxY0euq2aJjOY0SnkICJlfcchp0c2tg2bgb9a0f//+JKo3depUue2LtapUa0zBHBYX6JTBoHG96F+xc6cNrhjYmzZtUrOBnh+7NXWPskK7NQnDMAxDc00Ugc3FyJkHaBxAz1N1aLk1IPdRTVrM/rSqThrPwxua0pw+ffpQO9eiGzpAMySj0UTHy4kTJzB2peYrtijHlOQZB+jevXuLMWPGFEePHs3rA0Qppxcmvjw6PmvWLIJEnpW/sNrn99NvrOHgzDAMw4iEgPZivKKRus7FOJ3yHBCPCzqem6kPHz4closAUB2hVWHRGhsbSWcWnTp1KlauXAnJ0fKbOsVpMJDI7zNIhwwZkgI1DXYFRnlQpJWNCjPBrl27itGjR9O1otx+fPHUOZN3uqT7L1q0CJHBGGjpO+2bk+Oo8eDMMAzDiPNBrnWp7sy4MWcsWLCA83RdszVpul9Md3Jcx6J+Z66Nlmt0qgEhyj1x/ahRo5SRqmpw5gDNQAi2hPk46cm+ffvCqmnwasuNbPlercU49VPYT3DGwI60dPo+Fn2qxk21AytWrCiwocphGIZhGLlrjJrKqJ/GDkp1ziql0dyjc8XCyc+TIG3y5MnF7t27C0BJDUEX50twnXMl7ZHXxTFvqQOU540fPz41w9XV1aW5tGgFOMVpECw10Ro8adIkLJnUtpy2chBzhv1STGNGrbMArYQ4zktBKzJ6bBWxYIZhGIYhf0sJrSPDsXHjRmrAlA7NO/3lTqNaaITPUyPbhg0bmIs4p2w9HPfLU60xYKRTc9WqVQSKiNK2XnBmBs04Jb1Rmj59erFu3ToKKnPF5dzDExFZ0qJ6CUT7ptWFBrMYtA4dOvBycG3q0Fy/fn3q2KwUhmEYhmvVxJiJEUMInblEJEGUc4pdoLE54NixY0g5oQWq86K1YayDY6/PUYYqCdE2NDTgsdk2wZkDNGPChAmlU1tRX19PS7PYMPb6rE4bDG35G8q3rDFtrFHDUYAB3rlz5/RijB07Npqkc8rf7J15cBVll8ZPzyLbsAkoEGQH2QlGEAhLAJFdlrCpgMhidAyLoCIqYsCPfZHIxxdFZBUIoASFgCAwbAERECg2QUpAFFCgIKz6zcyd+5yqU/VOVwTRxOSG51d1q/v2vclft99+3rM8J00IIYQQ8+q0ujKLhlWvXl3i4uJk2rRpUrx4cb3mZnSAv9nNTGuRxenXr59938zW7dlk6U7/tB2MLdRABqyq8MyUvwgKNIIdgQ5Wj42Nld27d1s42XYRmBAAUYYom4aX/bM3zbnZP16jUKFCOtm/bt26+KHfdlwTIYQQYilKNxJmxuYmyFBX1qtXLylWrJibzXFHQCkWZLBo3KxZs6RPnz4WeXMjaWb5pN+3v9myZYtaUgWfkegk9SQTYA0aQfF+YO/evSrSqlSpgh+niTS3RVmF2sSJE137DH/eX0qUKKGjmypUqKB/Z9guyK75IYQQQsyj02rQ3MiY2XNgSgAyP4MGDdL3fkFm12wcIbBgAor8YfWE934xZxmhSZMmIbuE5yGmG3iSWTCCRhA2Ll++PIoptUvFUpzA3ZXA/A87F7/jv+12ypUrJ19//bVUqlQJ13CjWbuyM74pbQghhBCIM9v0G65Xp00JQOYHHZ543lhAAS+3ltr10LRnGsQX0p34zHDLe9CEAHGGMh38/0yHAo0eafCb' $Speedometer &= 'ue+++zQtuWfPHk1furl4Y+bMmVK7dm1/hw0MaDUCV7hwYff/CkCa9DYpTkIIIeRWnpj+pgBrHPCX2vhNzi3rgyOebZj3ifmd7ihCM6KFlRSMaJEtyhJeZxRoBMLKC46twI8ZnSpy+vRpPQduAwF+3Dt27FDDPmsMqFq1qpoJ5suXT9IbQgghxBVpJtRq1KihUa7hw4f7x0GZMNNAgTWyud8ZMmSIWGkUBB6eeQ0aNMD3kNZELbUnWQnWoJHDhw8HUGtWoEABGTlypBZV+msDAGoAsNOAKEOnC46ZBSGEEPqkWZDBUp34zKJmbnMAPv/HP/4hvXv31v9x6dIliYiIgC2HpkArV67sSVaEAo0EGwYCmDiAbkxLW1qe3rXMwESBggULmgeaI+AyBkIIIcQdy+ROEYAh+ooVKwS4qVDDmtng7RkVFSXg/PnzCDZgRrUOZw8PD/ckC0OBRpDGDGA0U8mSJTEcXUWa3y7D6tNc4ZaREEIIYeTMnbFpowhNiCHlOW/ePNST+RsEgHZw2tjBq1evalpz3759er1evXqeZHFYg0bQLOB169ZNTp06JY0aNZILFy5YTt/SnfZeX5kJIYQQ+qQBTMmBV5prjm6fxcTEQJzh+xBnGjnbv38/hrJnoDgj/4pccrpC0K0ZFxYW9taqVatk69atcFK2FKZ50giwnUxGQQghhFgpDWrKLIrm7/xEByaEFyJtmzdvtr/DuCbUVVvkDI1u2vAWLOfB9z0JRZjiJMnJyQH4wsAr7eDBg2qbYbjDZc2LJqMghBBCrIvTsEwOrrnjCGHDkZSUJAkJCfLss8/ad6Vdu3ayevVqmK9jUoAnoQpTnKR169Ze27Zt1cT2scceMwNaf+2ZnluNgCve7DwjIIQQQp80E2c4ms3G8uXL4UwAcYb3mBWtvmlr1qyRoUOHZh9xxgga+fTTTwPx8fHI1eOHjw5OiDEbom43iD/0jO/8JalQQggh7PCE15lNFrCIGwIL7du3lw0bNuiIqMcff9yT7AIjaAQ/6IEDB2revmnTpsjju+LM5pmZUHOLODN8kgAhhBCC5w6eSxBnZlCLyBl80tavX5+9xRkjaGTlypUBmPlhMPquXbsQSdObwcLKhj8FarVqGQEhhBAOWrcaaUTRcA4HAmR9jh07hrQm6s88ya4wgkaC9WhecAeC0Ri6Gzl37pyJM9wUFjmzHYy9z1CfNEIIIRy07prSXrx4USIjIyHOEDXL9uKMAo3YHDMPxZaJiYnSuHFjvQEA2p+BK9Jcg9uMghBCCE1s7Tnz/fffS506deTo0aOY1anPLLlboEAjAwYM8DAk/cSJE+rGPG3aNETQ3JSmO2xdb56MhBBCCIEoQ+Dg+PHjMmLECGnRooUndyOsQSNbtmwJoAATA9NTUlKkVKlSiKRBrOnR9a3JKAghhBCU3tSvXx9HHZ7esGFDT+5WGEEjuAEg0FJTUxFS1qkDwNyegY3dMHAO0ea2Rd8OQgghbARwzWktW4Pnyddffy0PP/yw/PTTTwJzdRVnhAJNOBbKQ2enuTRj+KzhCDGkOfHeRJtdR0HnLUUaIYQQThBAI8Cvv/6qpTNurfP27dulefPmKuAmT56szyQxCFOcRJDzDyCsjB3M559/jh2MO4ZDDGc81O/u8CSEEEKRZmMFTaRhMsBTTz0lefLkUb+zsmXLpiXOCAUaOXv2bABDaVGguXTpUunQoYOFonFMc+KA2XGYqa0fQgghBNEz1+ts7ty5EhsbK6VLl5a4uDgpWrSoJ2lDmOIkuEEQYq5Vq5Z07NhR+vfvjxvJtdmwiQPurM5bijNCCCEc4wRxZpYasM+IiYmRGjVqIK15B+KMMIJGsKMJbNq0SZo1ayZJSUmSO3du1AggcmaC7HelOQkhhDC9iY0+omjdu3eXFStWSFRUlAQzNp7cOYQCjbz77rsBiLOwsDAdDVWkSJE7TmkSQgghP//8s7Ru3Vr27NmD4eeYZuPJH4cwxUlD20aNGskP' $Speedometer &= 'P/wAGw5MHcAuSF9mseFG0vwQQgghP/74I7ozdaPfp0+f9BBnhAKNIAQ9ePBgnToQHh6O3Q/SnOaXhpC1NQ/4PW+yh3gjhBCmKNPywrRNeprWTHjduHEDhuhSqVIlOXPmjA4979GjhyfpA6FAIxhUO3bsWL3h6tatK7NmzdI0pxV+2pgoF/NHs2hbaEIIIcQEl/mY2TU7t/f2Avjs448/liZNmuD5gLrmDBx6TliDxjlpAQg1RNNeffVVjOMwTxvbPdnLphFkkwYCQgihSHPLW7A5t+uuZ6Z5nUGcdenSRcqUKaPPi4oVK3qSMRBG0AhusKlTp8JMUMaNGyddu3a1ELftmPQGNXFmr9CFEEKIf53HGg8hhoiaOxYQn+G7ffv2lSeeeEIiIiJkypQpf6U4I4ygkXfeeQcdnlqXtmTJEilfvjxuzlvuvEIXQgghN2/ehDizOmTLnNjMZgw6V2GWkpKiHZsvv/yyJ38thBE0Emwc8Pr16ycHDhxAd46OhzK3aOAOw8V5aEIIIcQaA3LmzKlizAxnrUkMbNu2TQee79ixAxG0zBRnhAKNoBvn9ddfl+vXr0ubNm1kzJgxaA6AKMPNbMNwQ78OjRBCaDRr55bqRB0a3iOjIk2bNpUrV64InglZqFOTMMXJ5gGIs5MnT0rLli21ODRHjhx2EzvHUIQQQhhBA2ZSbnM1YacEX7OFCxdKuXLlZNiwYVmt3owwgsbmgb///e/SsGFDTXVWrVoVtQiuMLPZnXZuRad6o2c+hBBCAeYONkdkzL1u3Zlmr4TJAGgCSExMFBiax8fHZ2VxRhhBIx988EFgwYIFkj9/fvVL69Spk7Vf46bXAlMTbe77zIUQQlhjZg1dEGJ2DqzmDN+BONu7d680btxYUlNTkc6UYD2yJ1kfQoFG1q1bF5gwYYJGyVq1aiXJycnW6ZPFuzsJIYQ+Z0hdoiHAFW22fn/yyScSHR2NMhY0Asijjz7qSWhAmOIkzZs39xISEqR48eKyevVqiYyMRDhcd2AAR9uNZQ0IIYTY9BcTZxZNw/HSpUvaCNC5c2cd3TRjxowQFGeEAo2gYNRDqhMRtK+++kqtOHbu3GmdnSg0xRGLgNakZS6EEMIaNEttQqi5ETU0gMFCY+PGjVjTIc50jZfQhjDFSZYvXx6YNm0admU6j+2ll16ymjQINT3PHAghhFgJCjIbEGVu9/2aNWukY8eO+llsbCzOPckeEEbQCG5odPiEhYWhDVu7PM+fP49i00w2siWEEGLlJ7ZhxgtrdK1atXQiQNGiRQVj/rKhOCMUaKRGjRoewuK44Y8cOSKlS5fWcSA2tzNzIIQQgs0y1mGrQdu1a5fUrFlT9u3bp8f3339f13DJlhAKNIKuHwxb97Aju3btGnzTMBIE51YHYfYb5pemOzs7N/zePHilDSGEEP966m/SsnQmZm1iTa5Tp442dg0aNEiC5Ske1m656yD/Jncd5JVXXvHat28fmDJlisyePVu++OILWbZsGXZq2MkhqobFBAWrJsLc4lX93K6DW9ewEUIIU5hIX7rTAPxjnA4fPqwNAKdOnZIqVarIwIED0a3pyd0FoUAjDz74oPfee+/J9OnTA8EmAmnQoAFmuEG8oZngt1yureUb10ycOR5rfgghhNiMZKsvs8yDvZ84caIMHz5cv/PII4/I+PHjPbmrIUxxEnQFeSNGjJA8efLIqFGjJCoqSs6ePQshpmaJFj1z05muOLPraUMIIcSmuQDr0oRou3jxIrzNtHkrX758MnLkyP8vzghtNgi5cOFCIBhNE/wecufOLatWrfKCo0RUibl2HCbObMGxVGjaEEIIcddJW0OXLl0qMTExMKDVjfGAAQOkUKFCnqQFoUAjJCkpCUJNF5MOHTrIzJkzJW/evOIXamaiiOgZ6itQu5Y2hBBCnzOrRUMjwJAhQ2TOnDm6zr7wwgsSrAn25BYQpjgJgSjzggPXpXr16pKYmCglSpSQxYsXQ5BBhFma' $Speedometer &= '08aSQKzdQpwRQgix9ObatWvVh3LWrFny0EMPwT7jzsUZYQSNkLfffjuADk/Qpk0bQVMBzG6tuNWKXp36Ch+EEEJSU1Pl6aefRoZCMw/PPvusPPHEE578EQgjaIS88cYbHlKc4eHhkpycLJUrV4abtTs3zkSaG1lzfX6ygwkuIYRF/m797W/6QuK6f91bv349JgFgDcVaiqhZ+okzwggaIQsXLgxgYQHly5dHMwGiabYQYVdoaU/Uqdl7/dw6QUMRQggx/0erw3UzCGY7hE0pvgNwfvToUTWa3bBhA/5GGwFee+01T9ITwggaIU8++aT34YcfSoUKFeTbb7/VUVGw57h69arbLKALlC1ortdPKEMIoY+ZjWRyu9ndTSi+AwGHtW/ChAmYBqDRs4iICElISMg4cUYo0AgpW7YsUp7e4MGDNSI2duxYGN7K1q1bLUqGo/n86EJmO81QhRBC3E2oYdEzNwV68OBBzMyUuLg4fI5pADCh9bB2yl8B4SQBwk7PevXqBUaPHq3jSRo1agQ/HxgswkPNFq9sY8FBCGENmkXSXNHmHjEJYPLkybruNWnSRNfE+++/35NMgLAGjRDUogXQ3Xnu3DkthI2Pj5fo6Gi/MaMuYqEKIYRYKtOao7CmYQOKTnd0aJ4/fx51udqhGTT59iQTIUxxEoLCV2/+/PnStWtXOXPmjHTr1g2z5DTUb91O2QVCCP3MIMog0g4dOiSRkZGwIFJxVr9+fZk7d26WE2eEETRCkO4MwIBx9+7duoB1795dI2oFCxaUUIYQQjCbOEeOHDqrGOUdKPxHRA1d7UOHDoUNkSdZEcIIGiFYoCZNmuS99NJLUqRIEVmwYIGULFlS/va3v2FxczufdGFzj66/kHWButf+LIQQWmXYGuT6Nbr+ZhjDZNi6Y93o+By+kJgEMGPGDNSXycsvvyzBySteKIgzQoFGCEL+askRbCRQG45Ro0ZJzZo1MRzYFkW3Vd2umfktrsOuw8SbXvszEEI4CxNrit94FkX/Fh0DOXPmtPdYd2ytgpcZNqBaX3blyhUt6cAah7VOQhHCFCchx44dC8yePVtSUlJ0wWvRogUiamhFxwJpNR1mAqkdn9Zg4E8t/BkIIcRsgPzmsv4ovgk3eD4iI/DZZ5/p31aqVEkHnVesWNGT7AKhQCPs9pwzZ46cOHFCF7/nnnsOxo1SrFgxt0NKj8BMHyHU8PqjEEKIdZJb5Mzemx2QiTXbCN64cUPeeusteeedd7AOwQNSevbsCfsMT7IjhAKNkMTExMCiRYvk8uXLUqhQIXnzzTfhFwRB5nZIubYcuKaf/xEIIcREmH+zd/36dcmVK5drtI3UpdaWXbp0SQoUKIC5mehO9yQ7Q1iDRggWunnz5qGGAyJNnbarVauG9nSLnFlxrh4tJfFnIITQHsOdBmBrDIy1bRzdl19+iTozbBi1zqxLly6CtepuE2eEETRCkO4MfPTRR7Jx40bsblGXprvX8PBwE2bpMmidEMIImhuhx3trSFq3bp02Mm3fvl3fN2vWTHr06IF5w57czRAKNEL2798fgCXHzp078RYFuGhnxwipdEtvEkI4qsnq0HD85ptv1Fh73759+AjDzSHMsFH0hBCmOAkRXRAnTJjgjRkzRh544AE5evQo3LilZcuWKtpcHyLgH1ps11z87fQhCyHE7nkc/fe1pSvt/W3v+QMHDkCYIZ0JcYY1RzvLsQbdQpwRwggaIevXrw8sWbIEQg1pCIyTkuC8T6QckKYwOw5brPUaMHsOGFJiMYenEXbKdj1kIYTgPrZ73SLrZpPhXwtcgWbvEamXfv366aQTUKFCBUw7QUrzTkQZIRRohKxevToQ7PqUkydPYoFVs9upU6dqdM0WYr/rtwkxf+1J9oEQdmK6g8sNs8fA5s2aAvC9U6dOyYsvvggvMwg6nQDQu3dvadWqlSd3DiFMcRKCBTToneah5R2jo5COaNq0qdSqVQu+arZLNmHmT3cg0pZN' $Speedometer &= 'OkAJIW6k3MxmTbjhGoBlhrFlyxasFRp5X7FihYSFhcE+A1Y/XjqLM0IYQSOMqMGOA8OKQZkyZSQuLg4+RVisVaS5Pmp2bhMLQhdCmN600Uyu8ax7bkdEysaPHw/bDF0DihYtKr169ZLWrVt7knEQQoFGyNq1awPwJzp9+rSAe++9V0aOHKlpi7x589qoFv+iHvoQQqHmn6+p9/i1a9cEneAjRoyQ8+fP47q6/0dHR8tjjz3mSQhCSMg9uQjBght8yaZNm3R81HfffYcaExVpffv2lcGDB0uJEiXc4eshnOokhPjLGawW7eLFixIfHy/Tp0+H8z8EnEbWn3nmGdj0eJJ5EMIIGiG7du0KoMYENScA8/Q6d+4so0ePllKlSmWP9CYhNJp1vRNVmC1evBjRM/2sbt260rFjR6ldu7YnWQZCKNAIgfFkYPny5fL555/bjluqV68umFaAYxqmle6gdhuenNYDwV/3cvvrfgihwHLvGb95LD6/rbnssWPHNFq+atUqMdDd/fzzz0ulSpU8yboQQoFGyLlz5wKffvqpfPzxx3Lz5k0s7Op5NGzYMHnyySfVH80VZtaSD1w/JXxuHWN4b40HVvuC927r/60hhPiFmbtJsvvR6kbtM9yDCxcuRAkDyhn0ep48eaR9+/by+OOPwzbDk5CBEAo0QiCmAsnJyWixh5ca3st9992Hrk+tVatataou9ia07Ny/47fPgB3tOl6/rwmBEHqY2WbHL9hwzR8xO3TokMyePVtQZ2r1ZcWKFdMpAG3btsV950lIQwgFGiEYhBxYuXIljvaQUI+k/v37a71a/vz5cd19YPjNMHHuijX7nr7uDEIYRbMNEc5tIkBqaqraZCQkJMi2bdvsHpN69epJu3btUGfmSbaBEHZxEoIF3gu+4CoeCPqpCSJrmPO5Z88eGTJkCIYko7ZFU6H20LCjG1FzR83Y+19++UUbE34fhHBguZ8jR45gnBvqRREtM/sczOPVV8mSJT25OyCEETRC1qxZA7GGVArSJxBhGlWLiYnRqFqhQoXc1KfO+DRDXDcC8PsghEazbj0nLDKWLl0q8DRMSUkRgM/Cw8OlefPmd/koJkIo0AjBUPZAsPMTQ9rRVICIGAxvUYCs3WH169dHxCxNF3O3ieD2EMIuTjj8z5w5E7WhMJXV+6dAgQI6xq1FixZSsWJFTwghTHESggdC8CWxsbGBdevWyYYNG5D6VGfyZcuWYYafNhX07NkTBrj+VM1txBkh5MSJE9qJuWjRIlhlWDQaNWUQZhox83DBDyEclk4I8YJgSsG4ceO8Dz/8EG7kaOHX1v4333wTdTBSrVo1mThxIq6Zq7lZc6hwc18Gzu2Y1rn/b13M6iM9IOyiNMwuBtjx119/td+aNcik+Ru063YOsYWjn59++klnYj7yyCOo7YRNhtaaFS9eXO+t+fPnC+413HNA7gRCmOIkhOzduzeA9OfmzZvl+vXr1iAAsYYhzHihoBnX/F1q9l4fYtZI4Na1uV5r9rJuUWB+UOkBoUjDbw2bCn/U11L4do7vgLTsZwx/ah//G3Y2wW5pRMtw32i5AMiXL59ERUUhWoYaM0/SE0Io0AghwfslEHxhDqgrwiQyMlI6deqk3aBFihQRH/6H3V89gYCwSN81ZPZHyVw/P9duxjYMv5nOx8YDxf5IXSYlJcEaAwLPxJuKsoYNG+LoSQZDCAUaIQSRtAAiasHRUmgysAeZRh7q1KmDqBp8m5DOwWf+bjZ7GFpEw29D4I96qEfUH4QQi5D5xdotNxH4nk3NsBSoTdBAcT8EWWJiojbX3HPPPfgcn6lnWYMGDaRx48aSO3duTzIBQijQCCEw1wwgcmBiDYLLIhIRERESrLGRNm3awMIDDzh70Jl1h37PH9kwcD29IMQ/vszS6e5vFr/PICa6cMTfoXEG1jQCaxqc37hxw/4Hiv0RKcML6UxPshKEUKARQq5cuQKxplYCOEKAWYSscOHCsOyAxxpq' $Speedometer &= 'cbQBwY2oWcTCaoT8FgV/BkLc6BjOgb1Pa/A/XP1hP4ONx9q1a+Xy5ctWf4nfKCJlSO3jNw1bGk9CAEIo0AghEGcBjJbatWuXbN26FbU6KsQsalGzZk3p2rUrHnCo0bntUOn0gtCLzE15IhKWK1cubBDwW4UYU4+y3bt3u1M1YNwMUYauTETMsscsTEIo0AghBw4cCGC8FF7Hjx/HQxIPP6SQkBbSup3o6GjU7sB7LUOEGeGYJXfeLGrJ8AyA39/GjRthjWH1aXosW7asirHatWuja9mT7AYh9EEjhOAB16dPHy8hIcH7v/bOZSe2IozC+3hFAQkqGJSr3M8RVMQYY0Jk4hswdOArCOFdfABHjhzgxIFOTDAYEVpuioBcGhCRKBfvtn6VrORPn0p7HBxvZ62kUrV3dfdu9ibpL3/9tX5qDs7MzBSTk5NFXV1dcXZ2RtQimeF2d3encjfT09PF3NxccXJyEv3TotWBlkVzP8iZcfZY7896Y2mnHspcP4ytGl542eel+eg9prGOJXmN0Thfq5ySej3TWPGCZUrq0M7OzvI/ljaxTE1NUXIpwVpTUxPRXOrTUheT+pjX/vAsu3bHwpllOYJmWY6u4RtFFIPoWox2kO9z48YNlpfShoOJiQn5rmkXaC5SUuucQEGREl0n5iHFZbEYdclYhiAr3KMIXhwDSmwMifdWY4FXrPNKi883dy29p6Z1y+HhYcqFnJ+fL6iSUSqV4v9Wusbo6GgxNjaWNrHkQcyyLAOaZVnUA60sLS0Vy8vL7JajNI6SsxV9IfLBj2qKwI2PjwNvAEAEMl4r8Kpe2rqVpbAIAlr2ivPexBCVNyiO8FQLcjUvkIt5YjEapmeZXa5knv8XYIxNKrTd3V1tVAH2ZLBMIweSKBoGyn8VyizLMqBZlnV5eVkplUpE2Qr1VfBET54Qu+qw9gDayB8ivy3rtxajZxEM4g9+HOv19EiflYUzJ+PXjEiiKjDLFt6XF5nud7Rnoaj/1tZWSuoH5oGyxcVFEv6BOp6n3pcgbHBwkB4wu03eZJZlGdAsy67wldXV1WJlZSW1tbU1ctg0RycfK36QgTUaS1mKmAgaIrxFQNC88p9i4rhAgxYiOoYyLWfW8B9jnpaNVsaImp6JRBSVpUqAbGFhoeD5X1xcAGPxeZBDRmQsLYlfv36dxuf8Ew/IsiwDmmVZ5XK5gkkubWNjgx/wFE1BRF0UJQPaiKwNDQ0VAwMDxcjISLJN6O3tzeWUZUGuGia0FFfYViUuSaJsFYh4L3V/5dQPiLG0TaR0c3MzwdjOzo5MYyNAFw0NDTxDnh3PM7W2trZ/MYxZlmVAsyyLwtVAGz/0NJbEMB+NOzEFB8ACsIa9B41oGz25bkRjiLpFgMvko7nWJaqGLo21FEzx8PX19QRdR0dHGtOzOUSQp88ByngfNiwJxPr7+4u+vr7Ud3V1/Q9uvGVZBjTLsvC5qmxvbxehAXKAgCoaKCp2U7RmeHhYAAe0xXGIErnmJTmC3FfsUQCvg4MD4Jj7jFmxomcCZaJj9MoDTPDV0dGB3QpQlvrW1tY7DMYsyzKgWZaFHUOFHX+0/f19GhGdFHG7FWH70dPTk9zmOzs7ARAS05PHW319PblQAAhzwEZ0tFcdyHzR+PzuR41rRbJ0rHE2ET/ulIy5X/E7cA+4F1yXfD9gFtACuji3t7dXHB8fA2LyrOMzbirjFcU9AG7b29tp3Bfany5RWpZlQLMsy2JJrlIulwE4GstyNAGJ8twUCWKJjuVQdhkCZ/QCIuVjyfaBpTqAjtcBc5znNewypE4ptUt5vQp2A1PMA3yAjLzgdJ7rxl2pQFT6rldXV1wv2pBwLYxZmedvUJ6eoJT3k8vHe5njOC5Vahzhks/U30qyfvr+LS0tfNfYWDa+bdYWlmUZ0CzLsgCYClGj09PTgh7oYUcpx7jWa04gR81HoA2oAcwAK3m8RbhC8ZyOo6mrxDgau1ZvjBA00XOseT4nRsw0' $Speedometer &= 'r+NYuF7RMKALQBSA0RMNa25uBsY4R/tvWFlYlmVAsyzL1iAAG9Gp8/Nz9VhF4PNGA+KI2NEDfoAc0TPO0VT9QJE2+ghmimrJYkRQBowxpuc8DYAiisUYaEytsbER+GKOxjEARv4dSfqM/zbLCsuyrN8B/G2x0vxeJssAAAAASUVORK5CYII=' Local $bString = Binary(_Base64Decode($Speedometer)) If $bSaveBinary Then Local $hFile = FileOpen(@ScriptDir & "\Tacho.png", 18) FileWrite($hFile, $bString) FileClose($hFile) EndIf Return $bString EndFunc ;==>_Speedometer Func _Base64Decode($sB64String) Local $struct = DllStructCreate("int") Local $a_Call = DllCall("Crypt32.dll", "int", "CryptStringToBinary", "str", $sB64String, "int", 0, "int", 1, "ptr", 0, "ptr", DllStructGetPtr($struct, 1), "ptr", 0, "ptr", 0) If @error Or Not $a_Call[0] Then Return SetError(1, 0, "") Local $a = DllStructCreate("byte[" & DllStructGetData($struct, 1) & "]") $a_Call = DllCall("Crypt32.dll", "int", "CryptStringToBinary", "str", $sB64String, "int", 0, "int", 1, "ptr", DllStructGetPtr($a), "ptr", DllStructGetPtr($struct, 1), "ptr", 0, "ptr", 0) If @error Or Not $a_Call[0] Then Return SetError(2, 0, "") Return DllStructGetData($a, 1) EndFunc ;==>_Base64Decode #endregion Maybe you can adapt it for your needs. Have fun with it... Br, UEZ
    1 point
  6. you can look into registry. #include<GUIConstants.au3> $gui_width = 500 $gui_height = 600 Global $count = 1, $all_keys = "", $main_key = "HKLMSOFTWAREMicrosoftWindowsCurrentVersionUninstall" GUICreate("Installed Software", $gui_width, $gui_height, @Desktopwidth/2 - $gui_width/2, @DesktopHeight/2 - $gui_height/2 - 75) $gui_list = GUICtrlCreateList ("", 10, 10, $gui_width - 20, $gui_height - 20) GUISetState () While 1 $act_key = RegEnumKey ($main_key, $count) If @error <> 0 then ExitLoop $act_name = RegRead ($main_key & "" & $act_key, "UninstallString") $act_name = StringReplace ($act_name, " (remove only)", "") If $act_name <> "" Then $all_keys = $all_keys & $act_name & "|" $count = $count + 1 WEnd GUICtrlSetData ($gui_list, $all_keys) While 1 $msg = GUIGetMsg() If $msg = $GUI_EVENT_CLOSE Then ExitLoop Wend
    1 point
  7. Belini

    Menu versions of autoit

    I removed the link to the installed versions, now only has the link to download the scripts. NOTE: Place the versions of Autoit in empty folders, run the installer to copy to program files.
    1 point
  8. More nit picking: The function 'Dec' From the Help File Default = string is interpretted as integer. See remarks. 1 = string is interpretted as 32bit integer 2 = string is interpretted as 64bit integer 3 = string is interpretted as double Failure: Returns 0 sets @error to 1 an invalid hex string was used or if an overflow occurs. Default behavior is that input string is treated as integer. In this case if the result is within range of 32bit integer, it's returned as 32bit integer and if not it's returned as 64bit integer. Both signed Suggested Changes Default = string is interpretted as an integer. See remarks. 1 = string is interpretted as a 32bit integer 2 = string is interpretted as a 64bit integer 3 = string is interpretted as a double Failure: Returns 0 and sets @error to 1 if an invalid hex string was used or if an overflow occurs. Default behavior is that the input string is treated as an integer. In this case if the result is within range of a 32bit integer, it's returned as a 32bit integer and if not it's returned as a 64bit integer - both signed.
    1 point
×
×
  • Create New...